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ABSTRACT

A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented
rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of
data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for
time- domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime
of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for
time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art
deep learning architectures coupled with tools that leveragemodern hardware accelerators are essential.We showcase how the use
of modern deep compression methods can achieve a 18× reduction in model size, whilst preserving classification performance.
We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency,
and thereby throughput of alerts, on the order of 8× for local processing, and 5× in a live production setting. To test this in a live
setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system
of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules
that exist in FINK. The results shown herein emphasise the time-series transformer’s suitability for real-time classification at
LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable
inference of deep learning models for transient classification.
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1 INFERENCE IN THE AGE OF LARGE SYNOPTIC
SURVEYS

The turn of the century has seen a move towards ever larger astro-
nomical surveys, collecting large volumes of synoptic data across the
night-sky, as opposed to previous instruments that focus data collec-
tion for a single science case. Being able to conduct a large swath
of science from a single data source is one of the main drivers for
development and construction of such surveys, and allows for many
science communities to benefit from a single instrument. Recent sur-
veys such the Sloan Digital Sky Survey (SDSS York et al. 2000), the
Dark Energy Survey (DESAbbott et al. 2016), the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS Kaiser et al.
2002) to name a few, are examples of astronomical surveys that map
the sky without a particular astronomical target in mind. They are
often limited in scope in terms of electromagnetic spectrum, but can
serve as the precursor to more specialised instruments for follow-up
observations. Typically, surveys are used to generate catalogues of
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astronomical objects, as well as logging astronomical transient events
on the sky.

The detection of transient events is of particular importance for
probing the nature of dark energy and constraining theories of the
Universe (Riess et al. 1998; Perlmutter et al. 1999). Typically SNe,
which are observed over a period of a few days to a few weeks,
are classified by the presence of particular absorption lines in their
spectra. Specifically, Supernovae Type-Ia (SNIa) are distinguished
by the absence of hydrogen lines and the presence of Si II 𝜆 6150
absorption (Riess et al. 2001). However, spectroscopic classification
of transient events is a costly process. By using broad photometric
passbands, LSST will be able to “see” far more events than ever
before, or that could be possible with spectroscopic equipment. The
problem then arises: how can one accurately identify different tran-
sient photometrically using only passband information? In contrast
to spectroscopic classification, photometric classification is far more
challenging, and one ismore susceptible to cross-contamination from
other events such as core-collapse SNe (SNe Ib/c and SNe II) which
share a similar profile to SNIa when observed photometrically. Con-
sequently, studies have been done by similar photometric surveys
to determine the acceptable level of cross-contamination from such
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events that would still allow for robust cosmological analysis of the
dark energy equation of state. This range has been reported to be be-
tween 8% (DES Vincenzi et al. 2021) and 5% (Pan-STARRS Kaiser
et al. 2002). It is expected LSST will require a high SNIa purity and
cross-contamination rate to be at least within this range, if not lower.
It should be noted that these levels are in the context of full phase light
curves, and so one may expect a higher level of cross-contamination
in the early phase of the events, where only partial information is
available for identification.
Whenmaking observations photometrically, the fluxmeasurement

corresponding to a given passband is obtained by collecting all light
that is received though that particular filter. Multi-band photometry
allows for more information to be retrieved to help determine prop-
erties of the light source, such as temperature, but this is of course
not as rich as observing spectroscopically. However, if one collects
multi-band photometry over a period of time, of the same source, a
light curve can be constructed, which tells us more about what kind
of a transitive event this may be.
The image processing method of difference imaging measures

differential photometry by matching the pointing and point-spread
function(s) between image frames, typically for the detection time-
varying celestial objects (Wang et al. 2017).Anew image is compared
with an aligned reference image, where the difference between the
two images is determined by calculating the difference between each
pixel of each image, and forming a difference image from the result.
A detection occurs when the difference image is above a certain
signal-to-noise threshold. When this threshold is reached, a transient
event alert is triggered, with data streamed to brokers around the
world for follow-up analysis.
With difference imaging processing now done entirely in software,

the need to automate pipelines for detection and classification of
transient events comes from the sheer volume of data these surveys
generate, as well as the number of events they witness. Developments
in instrumentation have allowed these surveys to scan larger areas of
the sky and more detailed than ever before, with the consequence
being that machine learning has now become a critical component in
order to process the data.
When the Legacy Survey of Space and Time (LSST) at the Vera

C. Rubin Observatory comes online, it is expected to observe 10 mil-
lion variable and transient events per night, generating on the order
of 1TB of data per night1. The tsunami of transient alerts that is to be
distributed globally, calls for machine learning systems that can scale
to such data rates, and yet still provide robust identification of events.
A classifier that can process an alert and provide classification scores
in real-time will not only enable efficient allocation of resources for
follow-up observations, but assist with labelling of the millions of
events which is certainly beyond humans at this point. At this scale,
storage space and computational costs becomes a real concern, and
so for real-time processing andmachine learning enriched catalogues
to be feasible, classification modules need to be lightweight in terms
of storage space and runtime memory footprint. Furthermore, com-
putations should be done as efficiently as possible to not only save
on time, but also money by minimising energy usage.
We structure this article in the following way. Section 2 discusses

the challenges involved when dealing with a large influx of data from
space surveys, and stresses the need for alert brokering systems. We
touch on the policies in place for developing such brokers and de-

1 Raw data volume for image and calibration data will not be distributed with
the alerts to save space and reduce the data sent over the wire, which would
otherwise amount to 60PB over the course of 10 years of operation.

scribe what motivates the use of the Zwicky Transient Facility (ZTF
Bellm 2014) alert stream in preparation for the upcoming LSST
data distribution in Section 2.2. Following that, our focus turns to
one broking system in particular, FINK (Möller et al. 2021), which
served as the platform for the research discussed later in this article.
Section 4 explains the ideas behind the engineering efforts that ulti-
mately allowed for our deep learningmodel to successfully operate in
a production system. Our preliminary results on local tests are show-
cased in Section 5, followed by the results of applying our methods
in real-world conditions in Section 6. We then conclude in Section 7
with a discussion of these results, and how use of the methods de-
scribed facilitate efficient deep learning and real-time inference, at
LSST scale.

2 CALLING ALL BROKERS!

Due to computational constraints, and limits on bandwidth, the full
distribution of alerts fromLSSTData Facility2will only be sent out to
a select few community brokering systems, whose primary purpose
is to provide catalogue cross-match functionality and photometric
classification of objects, thereby enriching the raw alert packets with
value-added information for downstream scientific investigations.
A worldwide call for brokering systems was announced in 2019 to
entice teams interested in potentially building such systems (Bellm
et al. 2019a),whichwas soon followed by a call for concrete proposals
the following year (Bellm et al. 2020).

2.1 Community Alert Brokers

Since the full alert stream can not be accessed directly by scientists,
community brokering systems are essential software systems that
will enable time-domain science (Bellm et al. 2019b). Further to the
requirements of cross-matching and photometric classification, bro-
kers are also expected to provide additional services to enable science
such as a simplified user interface for easy querying of archival data,
a triggering follow-up observing service, additional alert filtering3,
among others. The call for brokers was not limited to any institutions
in particular, and the open call encouraged a variety of system de-
signs. As long as there is capacity for petabytes (PB) of storage space,
a large inbound bandwidth network, real-time machine learning clas-
sification modules, and of course sufficient funding, brokering teams
were free to set out their plans in The Call for Proposals for Commu-
nity Alert Brokers (Bellm et al. 2020). Naturally, brokers that offer
a suite of services along with the necessary infrastructure capabili-
ties, were seen more favourably by the selection committee, and in
particular brokers that take advantage of the unique real-time aspects
of the LSST alert stream (Bellm et al. 2020). Moreover, brokers that
already exhibit integrations with follow-up resources and other sur-
veys through existing agreements, as well as scope for community
building, was also viewed positively.
Of the many teams that put forward proposals, seven teams were

ultimately chosen that showcased their ability to match the criteria
laid out above, or at least showed the potential to realise the re-
quirements come time of first light. The successful broker bids were
from teams; The Automatic Learning for the Rapid Classification of
Events (ALerCE) (Förster et al. 2021), AMPEL (Nordin et al. 2019),

2 lsst.org/about/dm/facilities
3 The LSST Data Facility applies its own filtering of alert packets such as a
criterion of SNR > 5 and before distribution
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Arizona-NOAO Temporal Analysis and Response to Events System
(ANTARES) (Matheson et al. 2021), BABAMUL (Duev & Graham
2022), Pitt-Google (Wood-Vasey et al. 2022), Lasair (Smith 2019)
and FINK (Möller et al. 2021).

2.2 The ZTF Alert Stream: A Proxy for Success

In order to support development of the broking systems, LSST pro-
vided example alert streams to get broking teams familiar with the
expected data formats and protocols. Much of these were inspired
by the Zwicky Transient Facility (ZTF) already-in-action alert distri-
bution system (Patterson et al. 2019). The Zwicky Transient Facility
(ZTF) is an astronomical survey that observes in visible and infrared,
primarily focusing on the detection of transient objects that change
rapidly (Bellm 2014). Its high cadence allows it to observe the entire
northern sky in three nights over two passbands4. Although generat-
ing only a tenth of the data expected from the LSST, the data pipelines
and alert distribution systems in place with ZTF have been shown to
be suitable to act as a precursor to the much larger data rates of fully
operational LSST (Patterson et al. 2018).
The ZTF alert packets are in Apache Avro5 format, a binary seri-

alisation format, that contains difference imaging information of the
detection, yet is still compact and lightweight enough for real-time
worldwide publishing. Deserialisation is done in conjunction with
a corresponding alert schema that defines the contents of the alert
packet, and hence the information that can be used for processing.
LSST is set to follow the same data format as well as the same
pub-sub framework using Apache Kafka6 for the distribution of the
streaming data, where it collects data streams at source, from pro-
ducers (e.g. the telescope itself) and arranges them into sets of topics
that can be subscribed to by consumers downstream (e.g. community
alerts brokers).
Since 2018, the ZTF alert production system produces on average

250 thousand new alerts nightly, and it has shown to successfully
support streams of 1.2 million nightly alerts, which equates to ap-
proximately 70 GB per night, where each alert packet has been made
available within 10 seconds of event detection (Patterson et al. 2018).
On the order of 80,000 alerts per minute, the stability of the produc-
tion system when dealing with such data rates gives support to the
case for using the same technologies and protocols described in Pat-
terson et al. (2018) for developing brokers that are to be suitable for
the 10× larger upcoming Large Survey of Space and Time (larger in
terms of number of alerts, but also in terms of alert size).

2.3 FINK: A Next Generation Broker

Of the seven brokers mentioned in Section 2.1 that were successful in
securing a spot as one of the brokering systems, we discuss FINK in
more detail here. FINK is the system that the modified deep learning
model of Allam, Jr. & McEwen (2021) was deployed to, and was
the ultimate test bed for investigating the real-time capabilities of
the original time-series transformer (Allam, Jr. & McEwen 2021).
FINK goes beyond typical brokering systems by providing real-time
transient classification through fast state-of-the-art deep learning al-
gorithms that can be re-trained at low cost in a short space of time,
and by using active learning techniques, specifically online learning,

4 Only g and r filter bands are available from the public alert stream, while
the i filter band is only accessible to the private part of the survey.
5 github.com/apache/avro
6 github.com/apache/kafka

that allow for continuous self-improvement of classification scores.
Specifically designed to address the challenges outlined in Section 1,
it uses industry standard tools for efficient big data processing. In
order to carry out nightly processing of the terabyte data stream,
FINK uses fault-tolerant Apache Spark (Zaharia et al. 2016) for
scaling out computations across many computers, and Spark Struc-
tured Streaming (Armbrust et al. 2018) to easily interact with Apache
Kafka for consuming the data stream.
FINK currently has a memorandum-of-understanding (MoU) with

the Zwicky Transient Facility (ZTF), allowing it to receive real alert
packet data, in the form described in Section 2.2, each night. This
makes FINK well suited for not only testing how well deep learning
models can perform under stress with real-time constraints, but also
to test how well models handle classification of real data. The FINK
system diagram can be seen in Figure 1. Along with mapping the
flow of data through the broker, Figure 1 also shows at which stage
the redistribution of enriched alerts will take place. The interplay
of the photometric classification modules in the Processing cluster,
additional third-party survey data via the Communication cluster and
aggregation of value-added information in the Storage cluster, form
the foundations of the Science Portal, which can be used to enable
scientific analysis and offline querying of the archival data for those
in the community. As of 2023, the Science Portal gives access to
more than 10 TB of alert data.

3 THE TIME-SERIES TRANSFORMER

This section reviews the time-series transformer architecture of (Al-
lam, Jr. &McEwen 2021) that motivated this work and highlights the
appeal of using such an architecture for fast and efficient astronomical
transient classification.

3.1 The Motivational Driver

The problem of time-series classification is one that extends to a vast
number of disciplines. Aswithmany domains, traditional approaches
involved hand-crafted feature engineering to uncover patterns that
would be useful for classification. Today, with the shear volume of
data, deep learning methods are being investigated as a promising
alternative to previous methods for classification (Fawaz et al. 2019).
Of the deep learning methods applied to general time-series clas-

sification discussed in Fawaz et al. (2019), the most successful archi-
tectures have been variants of convolutional neural networks (CNNs)
with work by Wang et al. (2016) and by Geng & Luo (2018). In the
field of astronomy, recurrent neural networks (RNNs) have become
popular for astronomical transient classification (Möller & de Bois-
sière 2020; Muthukrishna et al. 2019; Charnock & Moss 2017).
Although these deep learning methods achieve impressive results,

both RNNs and CNNs often struggle when dealing with time-series
data of increasing sequence length. The inherently sequential struc-
ture of RNNs makes parallelisable computation troublesome since
each input point needs to be processed in order. CNNs, on the other
hand parallelise easily and, with the use of the dilated convolution,
larger sequences can be processed (Oord et al. 2016). Having said
that, CNNs suffer greatly from being relatively computationally ex-
pensive compared to RNNs (Vaswani et al. 2017). The transformer
architecture and accompanying self-attention mechanisms help mit-
igate these problems faced by CNNs and RNNs for long-sequence

8 github.com/apache/hbase
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Figure 1. FINK pipeline and system architecture, where the main alert streams are processed in a distributed manner using Apache Spark (Zaharia et al. 2016)
on a Processing cluster. Following the initial processing, a set of sub-streams are produced which users can subscribe to by way of the Communication cluster
using Apache Kafka. Further survey data streams, such as those from LIGO, Fermi, etc. are ingested into the Processing cluster through the Communication
cluster, to enrich alert packets with added information. This is used in conjunction with science modules within the Processing cluster that provide classification
scores for alerts and added-value information. After a night of operation, the processed and enhanced data is written to the Hadoop Distributed File System
(HDFS) in the Storage cluster which connects to a Science Portal backed by the distributed database of Apache HBase8 to allow for interactive querying of
archived alerts. Reproduced in full from Möller et al. (2021)

time-series data (Vaswani et al. 2017). The work by Allam, Jr. &
McEwen (2021) proposed a new transformer architecture for time-
series classification that was originally motivated by astronomical
transient classification but was found to be versatile enough to be
applied to general multivariate time-series data.
As described in Allam, Jr. & McEwen (2021), the time-series

transformer, t2, shown in Figure 2, forgoes the decoder arm of the
traditional transformer architecture of Vaswani et al. (2017) yet adds
new layers for Gaussian Process interpolation and inclusion of ad-
ditional features. The few number of parameters used in this model
compared to other deep learning approaches, combined with fast and
parallelisable nature of the attention mechanisms within make for an
appealing architecture to be deployed. In the next section we discuss
the performance engineering choices that were made to improve the
time-series transformer’s capabilities even further, placing it into the
realm of production ready real-time systems operating at scale.

4 PERFORMANCE ENGINEERING FOR DEPLOYMENT
IN FINK

Since photometric classifiers are to be housed in the Processing
cluster (see Figure 1), low-latency, high-throughput algorithms are
essential to handle the deluge of data that is to be processed. This
section describes the research and development of a multistage com-
pression process in order to ensure best classification performance,
while optimising for low-latency inference and high-throughput pro-
cessing of alerts.

4.1 Line Profile Analysis

In order to better understand the bottlenecks in our deep learning
pipeline from alert packet processing to inference, as well as to in-
vestigate the overall systems performance, it is necessary to conduct a
form of dynamic program analysis. In contrast to static program anal-
ysis, which evaluates a programwithout execution, dynamic program
analysis focuses on the program’s memory usage, time complexity,

duration of function calls etc. Such analyses are typically done
through unit and integration tests, which themselves may include, or
can exist separate to the main codebase and line profiling tests that
scrutinise a program line-by-line. By observing time spent at each
function call, one can see where in the pipeline optimisations can be
made, and as such apply performance engineering techniques that
reduce runtime and memory footprint of the program.
To run such a test, we simulate locally the full pipeline from inges-

tion of a real ZTF alert packet, to interpolated time-series, to model
predictions, and gauge where optimisations should be applied by us-
ing the line profiling tool kernprof9. The line profiling software
reports the time spent on each function and the number of times that
function has been called, for each line of code in a Python program.
Although initial expectations were that the main bottleneck would

be the time-series interpolation through Gaussian processes, the ma-
jor bottleneck in the pipeline was found to be loading our model into
memory and applying the model to the input data for predictions (see
Listing 1). To combat this, we looked into ways of reducing model
size for faster model loading and operational changes to improve
runtime latency.

Listing 1: Line profile report for initial run of alert packet pipeline.
Superfluous lines that recored less than 0.1% time are removed
for better readability. Note the function to generate the Gaussian
process only takes 9.5% of the total time, with the majority of
time taken up with model predictions. For the full report, see
github.com/tallamjr/astronet/astronet/tests/reg

Total time: 5.85664 s

File: get_models.py

Function: get_model at line 29

Total time: 1.47076 s

File: ztf-load-run-lpa.py

Function: t2_probs at line 55

Line # Hits Time Per Hit \% Time Line Contents

9 github.com/pyutils/line_profiler
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Figure 2. Schematic of the time-series transformer (t2) architecture (Allam,
Jr. & McEwen 2021). If the time-series signal is irregularly sampled, then
data is passed through the Gaussian process interpolation layer, followed by a
concatenation layer to include any additional features. The embedding layer
follows to transform the input, with a positional encoding applied to this
embedding vector. The following multi head attention block is the same as
that shown in Vaswani et al. (2017). A GAP layer is then applied and finally
a linear layer with softmax to output class prediction probabilities for the
objects. Reproduced in full from Allam, Jr. & McEwen (2021).

==============================================================

...

206 16 139.6 8.7 9.5 df_gp_mean = generate_gp_all_objects()

...

...

...

...

...

212 8 180.8 22.6 12.3 X = df_gp_mean[cols]

213 8 12.3 1.5 0.8 X = rs(X)

...

...

...

217 8 1101.7 137.7 74.9 y_preds = model.predict(X)

4.2 Deep Compression

With the major bottleneck for fast inference identified to be at the
model load and then prediction stage, we focus our attention to model
optimisations that can be applied to alleviate this. Since our desire is

to run the complex model in real-time, we look to exploit redundan-
cies in the model, thereby reducing the storage size, lowering infer-
ence latency, and improving energy efficiency processing alerts. A
relatively recent area of research that looks to reduce model size and
memory footprint of deep learning models it that of deep compres-
sion (Han et al. 2015a). Originally proposed as a three-step process to
reduce the computational cost and memory usage of deep networks
on embedded devices, it is mostly driven today by the interests of
industry for deploying deep learning models in-the-wild on resource
constrained devices. This influential work saw a new field flourish
that combines bit saving best-practises with deep learning architec-
ture design to reduce storage size, whilst at the same time preserving
model accuracy.
For our research, we restrict our investigation to the techniques

broadly laid out in Han et al. (2015a), namely weight-pruning and
weight-clustering with Huffman encoding, and weight-quantization.
All of which can be applied in isolation or together, with the caveat
being that if these techniques are chained together, the possibility for
severe degradation in performance is high.

4.2.1 Pruning

Pruning is a technique that removes unimportant weights to yield
improvements such as better generalisation and improved speed of
learning and classification (LeCun et al. 1989). It has been shown in
recent times that deep neural network can be pruned to a significant
degree with little reduction in model accuracy (Han et al. 2015b,a).
While there are many forms of network pruning such as layer-

pruning (Lazarevich et al. 2021), channel-pruning (He et al. 2017),
filter-pruning (Enderich et al. 2021) and connection-pruning (Nguyen
et al. 2021), we consider magnitude-based weight pruning here (Han
et al. 2015a), where the weights are updated network-wide through
a small number of fine-tuning epochs to zero out model weights
that have a low impact on the final score, creating a sparse repre-
sentation of the model. Sparse models10 can then leverage standard
lossless compression algorithms for large reduction in model size,
as well as faster inference through fewer parameters and hence fewer
computations.

4.2.2 Clustering

Another method that promotes sparsity in the network is through
weight-clustering. Also commonly referred to as weight-sharing,
clusteringworks by grouping theweights of each layer in amodel into
a predefined number of clusters. The centroid values for the clusters
are then shared among the weights in the given cluster. By dividing
the𝑚 original number of weights in the network,𝑊 = {𝑤1, . . . , 𝑤𝑚}
into 𝑘 clusters 𝐶 = {𝑐1, . . . , 𝑐𝑘 }, where 𝑚 � 𝑘 there is a great re-
duction in the number of unique weight values in a model, which in
turn allows for greater storage efficiency and high data compression
potential. If we consider there to be 𝑛 possible connections in the
network, where each connection is represented by 𝑏 bits, then a fully
connected network would be represented with 𝑛 · 𝑏 bits. A clustered
network on the other hand, with 𝑘 clusters, requires only a cluster
encoding index of log2 (𝑘) together with the number of clusters with

10 Stored in compressed sparse row (CSR) or Compressed Sparse Column
(CSC) format gives 2𝑎 + 𝑛 + 1 numbers, where 𝑎 is the number of non-
zero elements, and 𝑛 is the number or rows or columns, which is normally
� 𝐿 × 𝑀 size of a complete matrix of all elements
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Figure 3. Weight clustering compression scheme, showing the weights of a
single layer neural network that has four input and four output units. In total
there are 16 weights, which are reduced to a set of 4 shared weights. The top
row depicts the full weight matrix for the 4 by 4 input-output connections,
whereas the bottom row shows the related gradient matrix. As an example,
using 4 colours to denote the 4 clusters, the set of weights are put into one of
4 clusters, where all values in the same cluster share the same value. As such,
an index mapping the weight to a particular cluster is stored. In the training
phase, the gradients are grouped by colour (cluster), summed, multiplied by
the learning rate, and finally subtracted from the shared centroids of the last
iteration. Reproduced in full from Han et al. (2015a)

shared weights. This yields a compression rate, 𝑟, of

𝑟 =
𝑛 · 𝑏

𝑛 · log2 (𝑘) + 𝑘 · 𝑏 . (1)

An example using a single fully connected four-by-four neural net-
work can be see in Figure 3. If we use Equation 1, we can see that by
setting 𝑘 = 4 (using 4 distinct colours to signify separate clusters),
one is able to reduce required number of bits for the original 16
weights at 32 bit precision, down by a notable factor with a compres-
sion rate of 3.2.
The canonical 𝑘-means clustering algorithm is used to find the

clusters, but of great importance in terms of the eventual model
accuracy is how the centroids are initialised. Of the three methods
for centroid initialisation in Han et al. (2015a), random, density-
based and linear, the authors report that random and density-based
centroid initialisation achieve poor performance due to few centroids
having large absolute values. Linear initialisation on the other hand
does not suffer from this problem, and is shown by Han et al. (2015a)
to work best under various conditions. A comparison of the different
centroid initialisation schemes is shown in Figure 4. For training,
a weight lookup table is necessary to maintain information about
the shared weights and their connections among the clusters. The
gradient for each shared weight is then calculated and used to update
the actual shared weight, as can be seen in Figure 3. The gradient of
the centroids is given by,

𝜕L
𝜕𝐶𝑘

=
∑︁
𝑖, 𝑗

𝜕L
𝜕𝑊𝑖 𝑗

𝜕𝑊𝑖 𝑗

𝜕𝐶𝑘
=
∑︁
𝑖, 𝑗

𝜕L
𝜕𝑊𝑖 𝑗

1
(
𝐼𝑖 𝑗 = 𝑘

)
(2)

where L is the loss, 𝐶𝑘 as the 𝑘-th centroid, and the centroid index
of the weight matrix𝑊𝑖 𝑗 is 𝐼𝑖 𝑗 .
At the stage for which themodel is to be deployed, i.e. for inference

operations only, the intermediate weight table can be stripped from
the model to leave just the clustered weights, suitable for standard
data compression algorithms to reduce model size on disk.
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Figure 4. Centroid initialisation schemes, using the bimodal distribution of
weights in CONV3 layer of AlexNet (Krizhevsky et al. 2012) as an example.
Shown at the bottom are the 13 cluster centroids for this example layer using 3
different types of centroid initialisation schemes. Random: randomly selects
𝑘 points from the data set and uses these as the initial centroids, shown in
yellow. Density: uses the cumulative distribution of the weights to create a
linear spacing on the 𝑦-axis, and then finds the corresponding 𝑥-axis value
that intersects with the distribution, shown in blue. Linear: evenly spaces
the 𝑥-axis of weights from min to max value and then places a centroid,
shown in red. Random initialization tends to concentrate around the peaks
of the distribution, as does density-based initialization, albeit more scattered.
Linear is even more scattered, but to note the initialization scheme is invariant
to the weight distribution. Reproduced in full from Han et al. (2015a)

4.2.3 Quantization

Quantization is the simple procedure of reducing the number of bits
used for representing numbers. Weight-quantization helps reduce
the storage and computational requirement of the model, and in the
case of our discussion here, applied after training is completed11.
Post-training quantization refers to the application of quantization
by statically mapping the weight values to lower precision integers,
where in this lower precision representation, the weights save sig-
nificant amount of space on disk, and can even see improvements
to latency by leveraging efficient integer kernel operators found in
modern hardware accelerators.

4.3 Lossless Data Compression

As touched on in our brief overview of deep compression,many of the
techniques lend themselves well to exploitation by standard lossless
data compression algorithms. Both pruning and clustering induce
redundancies in the model through repeated values. The canonical
compression scheme to handle repeated values is Huffman encod-
ing (Huffman 1952), which assigns fewer bits to repeated values. As
such, it is recommended to combine sparsity inducing methods of
deep compressionwith lossless data compression algorithms.We use
the DEFLATE algorithm (Deutsch 1996) within zlib12 which com-
bines Huffman encoding with the LZ77 compression algorithm (Ziv
& Lempel 1977) to realise the full benefits of sparsifiying our net-
work. Though, we are mindful of the potential trade-off between
storage space savings when using lossless compression tools and
the inevitable higher latency caused by the decompression overheads
when loading models into memory.

11 Quantization aware training on the other hand is a quantization procedure
that is applied during training by way of integer arithmetic for computations.
12 github.com/madler/zlib
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4.4 Efficient File Formats and Frameworks

While application of deep compression techniques are likely to sig-
nificantly reduce the size of our deep learning model on disk, the
possible increase in latency times in relation to decompression over-
heads spurred an off-shoot evaluation which looked at alternative file
formats and lighter frameworks that could help improve runtime of
model predictions.
The work of Allam, Jr. & McEwen (2021) (t2) use
ProtocolBuffers13 as the serialisation format for saving models
developed using the full TensorFlow framework (Abadi et al. 2015).
Inspired by the movement (David et al. 2021), that seeks to run deep
learning on extremely resource constrained devices, we look at the
possibility of using only a subset of the full TensorFlow framework,
called TensorFlow Lite (TFLite) (Li 2020). Compared to the some
1400 operations in the full framework, TFLite only has around 130
operations supported (David et al. 2021). A model developed using
the lighter TFLite framework is represented in a different file format
than that of the full TensorFlow model, called FlatBuffers14. This
portable, efficient, binary file format offers a couple of advantages
over using the ProtocolBuffersmodel file format, such as smaller
file size through the reduced operations and code footprint, as well
as much faster inference by way of zero-copy deserialisation for di-
rect memory access without having to copy it into a separate part of
memory first for an additional parsing or unpacking step.
For themost part, deep learning architectures are still designed and

built using the full TensorFlow framework, and only when the prac-
titioner is satisfied, is the model then converted to a TFLite model,
using the helpful TFLite converter tool. The process of converting
the original model to a TFLite version is where many optimisations
actually take place, with the principle optimisation being operator
fusion.
TensorFlow operations are themselves simple primitive operations

which can be combined together to form more complex operations.
The primitive operations appear as a single node in the computational
graph that is constructed by TensorFlow at runtime. Composite op-
erations that are built from multiple primitives, appear as separate
nodes for each primitive operation. Fused operations, on the other
hand, act as a single operation that comprises of all the computations
that each primitive operation would normally have, as a single node
in the graph. By taking advantage of the underlying kernel imple-
mentations, fused operations can maximize performance and reduce
the code and memory footprint, perfect for the resource constrained
devices that it was designed for, as well as for situations that demand
low-latency inference, as in our case. A useful by-product of fused
operators is a high level interface that helps define complex transfor-
mations such as quantization, that would otherwise be cumbersome
to map network wide.
Under the TFLite framework, in conjunction with fused opera-

tions, quantization is far easier to achieve, and actually appears as a
simple flag at conversion time when going from the original model
to the TFLite version. As described in Section 4.2, quantization is
the procedure of mapping floating point values to a reduced integer
representation (see Figure 5), and in this TFLite setting, falls un-
der post-training quantization umbrella. Perhaps unique to TFLite,
is that at runtime, the model weights that are saved as integers, are
scaled back to an approximation of the original floating point values,
to allow for computations using floating point kernels to give better
consistency with how inferences would have resulted had the model

13 github.com/protocolbuffers/protobuf
14 github.com/google/flatbuffers

Figure 5. Quantization mapping of float representation to integers represen-
tation. With the full range for 32-bit floating points extending from 3e-38 to
3e38, there is often a remarkable amount of bits reserved for the precision,
when in fact the majority of the numbers exists within a much narrow range
on the number line. Integer numbers represented with 8-bits extend from -127
to 128 for signed values, and 0 to 255 for unsigned integers. With the appro-
priate mapping and scale factor, 32-bit numbers can be easily approximated
as 8-bit integers, though 8-bit precision only has 255 information channels,
this is a lossy conversion. Reproduced in full from Bhuwalka et al. (2020)

had not been quantized in the first place. The formulae for approxi-
mating floating point values from the saved integer weights can seen
here,

𝑅 = (𝑄 − 𝑍) × 𝑆, (3)

where the real value 𝑅 is approximated by a scale factor, 𝑆, that
multiples the difference between the 𝑄-bits representation (which is
commonly taken to be 8 for 8-bit integer precision) and the zero-point
value 𝑍 .
This section has described the compression schemes and optimi-

sations applied to our deep learning model to improve latency and
reduce model size, yet with the aim to preserve accuracy. Figure 6
shows where each of these techniques have been used in the time-
series transformer architecture. Notably, weight-clustering has not
been used architecture-wide as it is not advisable to cluster weights
in critical layers early in the network15. However, as weight-pruning
and weight-quantization are done post-training, we are able to apply
these techniques to the model as a whole.

4.5 Hardware-Accelerated Distributed-Training

So far we have discussed optimisations that can be applied to the
model in order to save on disk space and improve runtime latency
such that classification scores can be given in real-time on the high-
volume of incoming alerts. However, of significant importance is the
ability to quickly retrain and update the model as new data becomes
available. It is expected that FINK will have a window of 8 hours
where new models will have the opportunity to be retrained before a
new round of LSST data ingestion and processing takes place (Möller
et al. 2021; Leoni, M. et al. 2022). Therefore, to have a model that
can be retrained, and hence improved with more refined data, within
this window is highly desirable.
As with the case in FINK, which scales out computation across

manyCPU-onlymachines in the Processing cluster to be able to churn
through the large amount of data quickly, we can take advantage of
the same data parallelism principles to also scale out computations
for retraining models. By simply splitting the dataset across mul-
tiple compute nodes, one can achieve a near linear-time speed up.
However, beyond scaling out to more CPU cores, we re-implement
the time-series transformer’s training loop to scale out computations
withmultiple hardware accelerators, in this case graphical processing
units (GPUs), for maximum speed up16. Compared to CPUs, GPUs

15 tensorflow.org/model_optimization/guide/clustering
16 We note that the codebase can easily be extended to run on even faster
tensor processing units (TPUs), but this was not taken further due to lack of
available resources.
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Figure 6. Locations within the time-series transformer (t2) architecture,
where deep model compression techniques have been applied. We investigate
three forms of model compression, weight-pruning, weight-quantization and
weight-clustering. Both weight-pruning and weight-quantization techniques
are applied post-training, and are applied on all weights in the network.
Weight-clustering on the other hand, is applied during training, and only on
the final dense layer to exploit parameter redundancy and to avoid the critical
layers such as those in the attention block.

do computations far more efficiently, saving time, energy and costs in
the long-term, but to ensure one takes full advantage of the hardware
accelerators capabilities, maximising the memory use at all times is
essential. If a GPU is underutilised, depending on the model and data
input size, severe training time degradation can be observed due to
communication overheads from host device (CPU) to the GPU ac-
celerator. The main, and perhaps most straightforward, way one can
ensure maximum utilisation is to increase data input batch size. It is
worth clarifying here that in this setting batch size does not refer to
the full dataset containing all training samples, rather it is a subset of
training samples, equivalently called a minibatch (Goodfellow et al.
2016). We shall use the terms interchangeably going forward.
Batch size in itself can have a major impact on model convergence,

but it plays a significant role when striving for optimal performance
and computational efficiency. Since TensorFlow uses 32-bit precision
for floating point operations on the GPU, model parameters take up
4 bytes each. Using this information, it is possible to determine the
largest practical batch size that can delivermaximumGPUutilisation.

In addition to greater computational efficiency, larger batch sizes
on the GPU are also expected to yield slight classification perfor-
mance gains. If we consider that the standard error of the mean is
estimated from 𝑛 samples as 𝜎/

√
𝑛, with 𝜎 as the standard deviation

of the samples, we can see that with larger 𝑛, one can obtain a more
reasonable estimate for gradients (Goodfellow et al. 2016, p. 271).
While it would normally be the case that the non-linear scaling of gra-
dient estimates would invoke a trade-off between how many samples
to use and compute resources, such is the computational efficiency
of GPUs that the limiting factor becomes the amount of memory that
can be used instead. Therefore, by increasing the batch size to be as
large as possible for a singleGPU, and then scaling this by the number
of GPUs available, through an all-reduce operationwhen running our
stochastic gradient optimisation, we can realise the improved classi-
fication performance in addition to computational improvements as
well.

5 PRELIMINARY RESULTS

This section presents the preliminary results of applying the model
optimisations outlined in this article to the original time-series trans-
former model (Allam, Jr. & McEwen 2021). We first run local pro-
cessing tests on real ZTF alert packets to gauge the potential perfor-
mance when deployed into the production system of FINK (which is
discussed in the next section).

5.1 Model Retraining

The original time-series transformer was trained using a single
NVIDIA V100 GPU, with 32GB of memory. Section 4.5 explained
how computational efficiency gains could be made by increasing
batch size. As a first test, we extend the t2 codebase to allow for
multiple GPU training while ensuring the largest batch size possi-
ble is dispatched to each GPU. Through the model profiling tool of
model-profiler17 we determine the best minibatch size to be 4096
using the same GPU as before. Now on the order of 100 times larger
batch size compared to the original model described in Allam, Jr. &
McEwen (2021), we see far greater utilisation of the GPU.
Scaling out computations across many machines and increasing

the global batch size gave remarkable speed up, bringing training
time down from approximately 8 minutes per epoch to 2 minutes
per epoch, where epoch refers to one full forward pass and one full
backward pass of all the examples in the training set. With an average
convergence rate of 130 epochs,we bring overallmodel training down
from 17 hours to nearly 5 hours, now well within FINK’s window
of opportunity for retraining new models nightly. Note that this is a
full model retrain, and simple fine-tuning can be done at a fraction of
the time should this be the preferred method of model updating. By
leveraging data parallelism in this way, where the data is distributed
across multiple devices for training, should even more hardware
accelerators become available, we can bring this down further still
with a near-linear reduction in training time.

5.2 Local Processing Tests

With the knowledge that we can retrain models quickly within the
specified window suitable for FINK nightly updates, we now move
to our first application of deep model compression. We discussed

17 pypi.org/project/model-profiler
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in Section 4.2 that of the three methods: weight-clustering, weight-
pruning, and weight-quantization, only clustering is applied during
training. To enable this, we modify our original model to allow for
clustering of weights in the network.
Clustering, otherwise known as weight-sharing, can indeed be

done throughout the network. However, it is advisable to avoid highly
specialised layers such as attention blocks, and only focus clustering
on the layers that are likely to have high redundancies. For this reason,
we only apply clustering to the final dense layer, as shown in Figure 3.
Firstly, we inspect the impact weight-clustering alone has on the

model performance compared to the original t2 architecture. Along
with application of model optimisations and compression, comes
the expectation that model performance could be adversely affected.
While it may be the case that the goal is to remove redundancies,
by using these methods, there is inherent information loss compared
to the original model, which must be considered. Under the same
parameter settings and conditions as the original time-series trans-
formermodel (seeAllam, Jr. &McEwen (2021), Table 2), which used
the six passbands of 𝑔, 𝑟, 𝑖, 𝑧, 𝑦 plus two additional features photo-
metric redshift and photometric redshift error, we can see in Figure 7
that by using clustering, we not only preserve model accuracy, but
this is improved slightly to a logarithmic-loss of 0.450 compared
to 0.507 previously. This actually takes the performance beyond the
previous state-of-the-art by Boone (2019) of 0.468. Furthermore, we
maintain our ability to provide classifications at the level required for
cosmological analysis of dark energy with a purity of 0.95 for SNIa
and a core-collapse SNe (SNe Ib/c and SNe II) cross contamination
of ∼ 4.5%, comparable to results calculated for DES (Vincenzi et al.
2021) and Pan-STARRS (Jones et al. 2018) with ∼ 8% and ∼ 5%
respectively. However, at this point, we should note that we are po-
tentially seeing the benefits from batch size enhancements and so
slight improvements in logarithmic-loss could perhaps be attributed
to this, in addition to weight clustering.
Nevertheless, redundancies have been exploited, allowing this

model to achieve good classification scores at a fraction of model
size on disk. With preservation of model performance confirmed,
we continue to explore the impact of applying other compression
methods to t2 and inspect compression rate, inference latency and
model performance trade-offs.
To continue our preliminary analysis gearing for deployment, we

simulate the ingestion pipeline and use real ZTF alert packet data,
such that it is akin to what the model would be expected to handle in
the production system of FINK. To synthetically create a ZTF-like
dataset to retrain our model, we use the same PLAsTiCC dataset (The
PLAsTiCC team et al. 2018) described in Section 5.1 of Allam, Jr.
& McEwen (2021), using only the time-series information i.e. no
additional redshift features, and drop all passbands except for 𝑔 and
𝑟.We then retrain to create a newmodel that can handle ZTF data, and
use this as our baseline, which achieves a logarithmic-loss of 0.968.
It should be noted that the synthetically generated ZTF dataset that is
derived from PLAsTiCC contains full light curves. This is generally
not available in real ZTF alert packet history data which only contain
a candidate records for 30 days in the past. LSST on the other hand
is set to provide up to 1 year of historical data per alert.
In a comparative study, we look at four main aspects when judging

machine learning models for production performance: model size,
model load time, model inference time, and finally model perfor-
mance in terms of logarithmic-loss score. It is important to monitor
any degradation in performance which would indicate whether a par-
ticular technique, or combination of techniques are still worth using.
This is all shown in Table 1, which compares the baseline architecture

of the original time-series transformer described above with various
compression methods and optimisations techniques applied.
The first thing to note from Table 1 is the immediate space savings

one can achieve through standard lossless compression algorithms.
The original model is able to be reduced down by 4.5×, which
is significant for space savings, but it is also clear that load and
inference latency are not affected. For the gains we are hoping for,
deep compression methods are required, and this will be the focus of
the remainder of this discussion.
The first method we apply is that of weight-clustering. We de-

scribed in Figure 4 the typical ways to initialise the centroids of the
clusters. We opt for using linear initialisation and set the number of
clusters to be 16 for the reasons laid out in Han et al. (2015a), which
puts poor performance of the other initialisation procedures down to
fewer clusters containing large weight values. The immediate effects
of clustering show improvements in logarithmic-loss from 0.968 to
0.836. We suspect this may be due to the reduction in the number
of parameters, helping to generalise the model as alluded to in Le-
Cun et al. (1989). We also see a slight reduction in model size, but
considering we now have shared weights, the real model reductions
are realised when we combine this with Huffman encoding, which
uses fewer bits for repeated values. Hence, we see a better reduction
in model size using clustering and Huffman encoding compared to
just using Huffman encoding on the baseline model alone. We would
expect far greater compression rates should the technique be applied
to more layers than just the final dense layer which goes from 448
unique values to 16 values. Models which have many thousands of
unique values would greatly benefit from this procedure. In addition
to space saving, we also see a small reduction in load latency as well
as inference latency.
We nowmove to the application of weight-pruning. Recall pruning

removes “unimportant” weights by setting them to zero, and specif-
ically those weights with low magnitudes. We apply this technique
network wide so all layers’ weights are evaluated and trimmed down
accordingly. Through fine-tuning of the clustered network, we soon
discovered that any additional sparsity that was introduced nega-
tively affected the classification scores. The results can be seen in
Table 1, where even pruning to a level of 1.1% sparsity degraded
performance. Further empirical studies are necessary to determine
what level of sparsity would actually benefit this network. Notwith-
standing, we complete our analysis by including Huffman encoding
to this pruned network to witness any improvements in load time and
inference latency. Indeed there is an improvement on both of these
metrics, but at the cost of classification performance, we disregard
using pruning any further.
Wemove towards a different approach for model optimisation with

a change in file format and framework as described in Section 4.4,
as well as application of weight-quantization. These results are de-
noted by the dagger (†) symbol in Table 1. These are models that
have originally been trained using the full TensorFlow framework but
converted to a more optimised, efficient file format of FlatBuffers.
The conversion also involves operator fusion, to combine primitive
computations that appear as a single operation in the computational
graph. With reduced code footprint through operator fusion, and effi-
cient binary representation of data, we naturally see a large reduction
in model size on disk. Around 10× space savings can be achieved
by simply converting the original model into a TFLite model. In
addition to the impressive space saving gains that are made, with
the model in this format we can take advantage of directly mapping
the model into memory for a reduction in load latency of more than
13, 000× speed up compared to the exact same clustered model and
almost 15, 000× that of the original baseline. As the model is loaded
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Figure 7. Confusion matrix resulting from application of a clustered version of the time-series transformer (Allam, Jr. & McEwen 2021), to the PLAsTiCC
dataset (The PLAsTiCC team et al. 2018) in a representative setting with imbalanced classes, achieving a logarithmic-loss of 0.450, using all 6 passbands and
additional information of redshift and redshift error

for each batch of data FINK processes18, this should lead to a fair
increase in potential throughput of alerts. While this would certainly
help with throughput of alerts in the production system, the other
key metric for success is inference latency. That is, the time go from
alert packet ingestion to classification. It can be seen in Table 1 using
the clustered model in the FlatBuffer format gives a speed up of
around 5× that of the same clustered model, and around 7× speed up
compared to the original baseline. Considering ourmodel is expected
to process millions of alerts per night, having inference latency gains
of this magnitude is undoubtedly positive.
Finally, we apply the third technique described in Section 4.2 of

quantization. To use this method, we leverage the functionality that
comes with TFLite’s model conversion tool, that allows for static
quantization to 8-bit integers by examining the dynamic range of the
weights when saving model to disk, and then upscaling to floating
point approximation at inference time. By quantizing the weights of

18 A batch, in this context, refers to the number of alerts bundled together
to then be distrubted across the cluster for processing. It is a compromise
between the number alerts simultaneously processed by each mapper in the
cluster, and the time delay between two alert stream polls: more alerts per
mapper leads to amore efficient computation by e.g.minimising calls tomodel
loading, but it will increase the time delay between two batches, leading to
redistribution latencies. Therefore low latency model loading allows for more
freedom when choosing batch size in FINK, and how often to poll.

the clusteredmodel, and saving in FlatBuffer format, we are able to
shrink the model even further to now 60 kilobytes, an 18× reduction
when compared with the original baseline model, and an incredible
load time improvement of 24, 000× speed up. Moreover, inference
latency is reduced slightly compared to the clustered model saved
in FlatBuffer format, for an overall gain of nearly 8× against the
baseline. An important point is to mention the preservation of model
score with a logarithmic-loss of 0.834. Note the slight improvement
in performance here compared to the clustered model without quan-
tization. We suspect this discrepancy between the other clustered
models to be due to the scaling approximation in Equation 3 and not
due to the application of quantization itself.

We have shown that application of compression techniques and use
of appropriate file formats, substantial space and memory savings,
alert processing throughput, and inference latency can be achieved.
However, we acknowledge local tests of the pipeline, while on real
data, may not be indicative of how well a model would perform in
a real production systems, under real-time constrains. Therefore, in
the next section we put forward our best performing model that uses
a combination of clustering and quantization to be deployed in a
live setting on the production system of FINK for tests of real-time
classification.
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Table 1. Comparative performance between the original time-series transformer model, referred as the baseline, and the respective compressed versions using a
combination of weight clustering, weight pruning and Huffman encoding. We present two sets of results in terms of models saved to disk in ProtocolBuffer
format and those saved in FlatBuffer format, where the latter is denoted by a † symbol. Load latency refers to the time (in milliseconds) to simply read the
model into memory, whereas inference latency (in seconds) tests the time to run predictions on a single ZTF alert packet. All tests were run on an Apple M1 Pro
32GB laptop.

Compression Method Model Size (kb) Load Latency (s−3) Inference Latency (s) Loss
Baseline 1100 6324.145 0.333 0.968
Baseline + Huffman 244 6015.565 0.224 0.968
Clustering 892 5559.868 0.227 0.836
Clustering + Pruning 688 5721.021 0.230 1.017
Clustering + Huffman 240 4991.857 0.223 0.836
Clustering + Pruning + Huffman 128 5251.288 0.228 1.017
†Clustering 92 0.426 0.046 0.836
†Clustering + Quantization 60 0.271 0.043 0.834

6 PRODUCTION RESULTS

In the previous section we spoke of creating a new model that can
classify ZTF alert packets and hence be usable as a science module
within FINK. Comparing that to the original time-series transformer
of Allam, Jr. & McEwen (2021) which worked with 6 photometric
passband of PLAsTiCC: 𝑢, 𝑔, 𝑟, 𝑖, 𝑧, 𝑦, as well as imputing additional
features of photometric redshift, we train a model derived from the
time-series transformer architecture that only takes in raw time-series
from 𝑔 and 𝑟 bands, with no additional features. This is done to fit
with the data that comes from ZTF alerts packets into FINK, which
do not contain photometric redshift information but only time-series
measurements for the two passbands of 𝑔 and 𝑟 filters. It was then
this 𝑔𝑟-only model that was used as the baseline, shown in Table 1.
Then, when using a combination of weight-clustering along

with weight-quantization saved in the more efficient format of
FlatBuffers, we created the best performing model in terms of
latency and space saving metrics when tested locally on ZTF alert
packet data. The confusion matrix in Figure 8 shows the performance
of this quantized-clustered model trained on only 2 passbands. We
calculate a purity of 0.89 for class SNIa, with a core-collapse SNe
cross-contamination of 8%, within the expected range described for
DES (Vincenzi et al. 2021) and close to the ∼ 5% described in Jones
et al. (2018) for Pan-STARRS.
While the model is still able to make good classification scores

across the board, removing the other passbands of u, i, z cause an
increase in cross-contamination by ∼ 4%. This is interesting in its
own right, where an avenue of research could lead to investigate why
training on only 𝑔 and 𝑟 passbands affect supernovae classification
in this way compared to when we can use all 6 passbands. This may
well be down to the lack of 𝑖-band specifically as this band along
with 𝑟-band is typically given preference in times of good seeing
and at low airmass (Abell et al. 2009), but for our purposes, we just
note these results to keep in mind when assessing model validation.
It should be mentioned that we only train a model of this form to
suit deployment into FINK (that at the time of writing, can only
ingest ZTF data), for testing of our model as a real-time classifier. It
is expected for LSST that a model more akin to that showcased in
Figure 7 that uses all 6 passbands as well as redshift information but
trained on discretised alerts would be deployed. Efforts are currently
underway to develop and deploy such a model with application to the
Extended LSST Astronomical Time-series Classification Challenge
(ELAsTiCC) (Naryan et al. 2022) and will feature in future work19.
This section presents the results for deploying our quantized-

19 portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/

clustered version of the time-series transformer model into the pro-
duction system of FINK tested on the real ZTF alert stream. We
compare the baseline model described in the previous section, that
achieves 0.968 logarithmic-loss on ZTF-like data packets, with the
compressed version, that achieves better logarithmic-loss of 0.834,
in a now live production setting, and observe alert throughput and
latency improvements that have been achieved when using the deep
model compression techniques.

6.1 Model Validation

The first test for our deep learning model as a science module within
FINK is to validate the classification scores that we achieve. Not
only is it important for our model to operate in real-time under
heavy work-load conditions, but it must clearly continue to report
correct classification results when deployed. FINK validates models
which target extra-galactic sources using the Transient Named Server
(TNS) (Gal-Yam 2021), which is a transient alert system that has
spectroscopically confirmed objects in its database. By comparing
predictions to that of what TNS lists for a given object, we can get
an indication of how well a transient classifier is performing.
Figure 9 shows our models predictive performance on one full year

of real ZTF alerts against the spectroscopically confirmed objects in
the TNS database (extra-galactic objects). In addition to the quality
cuts common for all modules, we apply further criterion of at least
2 points and at most 90 points on the light curve since the first
alert emission date, as well as the object to not be a Solar System
object from the Minor Planet Center (MPC) database or Galactic
object according to the SIMBAD database (Wenger et al. 2000).
Recall in 5.2 our baseline model has been trained using full light
curves. Since real ZTF alert packets contain only 30 days history, only
partial light curves are observable most of the time. This results in
a model being trained in non-representative setting where it expects
full light curves but is tested on discretised light curves. Yet, our
model is able to correctly identify the majority of SNIa objects,
as well as other classes. Though it should be noted there is greater
misclassification of SNIa and core-collapse SNe beyond the predicted
cross-contamination of∼ 8% described above and this is likely due to
the non-representative nature of the training data the model has been
built upon. As such, we would not consider our model in this form
to be suitable for a fine-grain transient classifier, and ideally would
need to be trained on the discretised data of alert packets to be more
representative, which is planned for future work. Considering these
results, we can instead frame our model as to be a general transient
classifier that is able to identify SNe more broadly. Indeed, when we
evaluate the model against the ensemble of predictions from all other
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Figure 8. Confusion matrix resulting from application of a clustered version of the time-series transformer (Allam, Jr. & McEwen 2021), to the PLAsTiCC
dataset in a representative setting using full light curves, with imbalanced classes, and only time-series information from 𝑔 and 𝑟 passband filters. This model
achieves a logarithmic-loss of 0.836, using only the 2 passbands and no additional information.

classifiers in FINK we can see our model is able to correctly identify
SN candidates, shown in Figure 10.
Therefore, while there are some misclassification within SNe

classes, the compressed time-series transformer is able to success-
fully classify supernova objects in general, and when compared to
existing science modules in FINK, correctly identifies supernova
candidates. It is also able to go further, where FINK science modules
labels certain objects as “Unknown”, our model is able to accurately
suggest these as supernovae candidates (see Figure 10). A clear
value-add for the brokering system which can be used to update and
enrich the database.

6.2 Alert Throughput/Latency Performance

With confirmation that the compressed model is operating correctly,
we now come to test the throughput and latency of the classifier,
ultimately deciding the usefulness of our model for real-time classi-
fications.
We first look at how the original time-series transformer, which we

refer to as the baselinemodel in Table 1, fairs up against other existing
science modules in FINK. For this, we take one full nights worth of
ZTF alerts, amounting to approximately 200, 000 alert packets, and
compare the throughput and latency performances of all the science
modules currently implemented in fink-science 20as of v2.0.0.
For an overall comparison, we show the “on-sky” throughput per-

formance that passes all alerts through all science modules, ignoring
any pre-processing filters that would normally be applied.
Over an average of 20 processing runs, the mean alerts per sec-

ond per core for each science module is calculated. These results
are most succinctly presented in Figure 11, where our model is the
only deep learning model of such complexity offering up a vector
of probabilities for the classification scores. Other science modules
such as Solar-System Object (SSO) and The Centre de Donnés as-
tronomiques de Strasbourg (CDS) cross-matching service are ex-
amples of table lookups whose performance is determined by the
execution of a query plan, and the only other deep learning model
of SuperNNova (SNN) (Möller & de Boissière 2020) offers only a
binary classification for SNIa.
The baseline model, with no compression or optimisations made,

is actually able to sit amongst the other science modules and deliver
real-time classifications. While this seems to have already achieved
our desired goal of deploying a science module capable of real-
time classification, it is important to consider that the model that is
deployed in FINK is not done so in isolation, but rather all science
modules within FINK will be operating in tandem. Correspondingly,
since the outgoing enriched alert packet is only sent after all science
modules have finished processing the data packet, each individual

20 github.com/astrolabsoftware/fink-science
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Figure 9. Comparison of spectroscopically confirmed labels in the Transient Named Server (TNS) database against the top-1 predictions for the compressed
time-series transformer. The data used for this test comprised of one full year (2022) of real ZTF data with specific quality applied to the light curve history data
requiring a minimum of 2 points and maximum of 90 points on the light curve since the first alert emission date. The set of alerts are also reduced to filter out
objects known to be a Solar System object from the MPC database or Galactic object when cross-matched against the SIMBAD database.

science module can have a large impact on the real-time science
capability of FINK as a whole. To not delay other modules that may
be time-critical such as for Gamma Ray Burst (GRB) detections,
science modules need to optimise throughput wherever possible,
ultimately benefiting the entire system.

Therefore, by going further and looking at howour best performing
compressed model manages to deal with the alert throughput in a live
setting, we can see in Figure 11 a sizeable improvement. While our
local processing tests gave up to 8× speed up compared to the baseline
model for inference latency, in a real production environment, we
achieve an impressive 5× in a live setting. It is suspected that a decline
in speed up compared to what was achieved in a local processing
context can be attributed to communication overheads in the cluster,
where networking bandwidth becomes the bottleneck in place of
computations, as well as differences in hardware capabilities.

This substantial throughput performance, thanks to low-latency
inference via deep compression techniques, greatly benefits the over-
all FINK system. As science modules are run serially in FINK, our
models ability to quickly complete processing not only ensures there
is no delay to other time-critical science modules, but also permits
more science modules to co-exist within the total computational time
budget afforded to FINK. Finally, by improving latency in this way,
we lay out a guide for other existing deep learning models, and those
under current development, for how to use model optimisations for
improved performance.

7 CONCLUSIONS

We have shown through deep model compression, complex models
such as the time-series transformer can be made super-lightweight
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for real-time inference. The already efficient architecture benefits
even further from weight-clustering and weight-quantization to pro-
vide low-latency, high-throughput classification scores, all the while
preserving the accuracy of the results. Our study of weight-pruning
showed good reduction in model size but proved to be detrimental to
performance. Clearly even the lowmagnitude weights of the network
carry information critical for good classification.
We have shown through careful choice of file formats, major speed

ups can be achieved, which in turn dramatically improves a deep
learning model’s ability to process inputs and operate in real-time, in
a live production setting. Our compressed version of the time-series
transformer now resides in FINK as one of the deployed science
modules, operating at production scale providing nightly classifica-
tions for the incoming ZTF alert stream since January 2023. We have
showcased our models suitability for providing robust classifications
at a fraction of the original model size and runtime. By scaling out
computations, we have brought retraining down to within the time
frame required for nightly updating on new alert data.
As described in Section 2.2, the ZTF alerts stream, although 1/10th

of the expected LSST data rates, is a good precursor for modelling
the suitability of models and infrastructure to howwell they will han-
dle future data streams. Consequently, we used FINK to emphasise
our model’s ability to handle such large volumes of data and have
presented results that showcase its ability to cope with LSST scale,
and beyond.
It is hoped that the work here, which introduces deep compres-

sion to the field of real-time transient classifiers, will be harnessed
to enable existing architectures to be deployed as real-time classi-
fiers easily into other brokering systems, as well as to inspire those
currently being developed that real-time capability is within reach if
techniques like those described here are applied.
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