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ABSTRACT
The Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is an optical interferometric imaging
device that aims to offer an alternative to the large space telescope designs of today with reduced size, weight and power consump-
tion. This is achieved through interferometric imaging. State-of-the-art methods for reconstructing images from interferometric
measurements adopt proximal optimization techniques, which are computationally expensive and require handcrafted priors. In
this work we present two data-driven approaches for reconstructing images frommeasurements made by the SPIDER instrument.
These approaches use deep learning to learn prior information from training data, increasing the reconstruction quality, and
significantly reducing the computation time required to recover images by orders of magnitude. Reconstruction time is reduced
to ∼10 milliseconds, opening up the possibility of real-time imaging with SPIDER for the first time. Furthermore, we show that
these methods can also be applied in domains where training data is scarce, such as astronomical imaging, by leveraging transfer
learning from domains where plenty of training data are available.
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1 INTRODUCTION

The Segmented Planar Imaging Detector for Electro-Optical Recon-
naissance (SPIDER; Kendrick et al. 2013; Duncan et al. 2015) instru-
ment is an alternative electro-optical imaging device to current space
telescopes like the Hubble Space Telescope or the JamesWebb Space
Telescope. While traditional electro-optical telescopes require large
optics, housings, and thermal controls for the optics to attain precise
measurements, SPIDER aims to decrease the volume, mass, and cost
of electro-optical imagers by replacing the traditional mirrors with
arrays of lenslets to gather interferometric measurements. The light
captured by these lenslets is processed using photonic integrated
circuit (PIC) chips into interferometric measurements. Typical in-
terferometers still require large components to make measurements,
yet by processing the light from the lenslets on an integrated chip
the size of the instrument can be reduced significantly. The SPIDER
instrument is designed to be a cheaper and lighter alternative for in-
struments that can be used for both Earth observation or astronomical
research.
The concept design for the SPIDER instrument proposed by

Kendrick et al. (2013) andDuncan et al. (2015) uses 37 PICsmounted
at different angles to form a planar disk. Interferometric measure-
ments are acquired on each of the PICs, and by combining the mea-
surements taken at each of the different angles, the telescope creates
a large synthetic aperture with the diameter of the aperture equal to
the largest spacing of lenslets on the PIC. A diagram of their design
can be found in Figure 1.
Beyond the initial concept, more efficient designs that make better
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use of the baselines (Liu et al. 2018, 2019) and improved lenslet
arrangements to increase reconstructions quality (Lv et al. 2020; Hu
et al. 2021) have been investigated. Furthermore, the PIC reconstruc-
tion capabilities were found to match the theoretical predictions of
the concept design well (Chu et al. 2017). Tests of the PICs show that
it is possible to measure both the amplitude and phase of the incom-
ing light as predicted (Su et al. 2017) and that these measurements
can be used for image reconstruction (Badham et al. 2017; Su et al.
2018).

Since SPIDER measures both the phase and the amplitude of the
interferometric signals, the measurement process is analogous to that
of radio interferometers. Interferometric imaging techniques devel-
oped for radio interferometry can thus be adapted and repurposed to
recover images from the raw data acquired by the SPIDER instru-
ment (Pratley & Mcewen 2021). Radio interferometry and aperture
synthesis have played an important role in pushing the boundaries of
astronomical research in the radio frequency regime, where acquir-
ing high resolution images is otherwise difficult because of the rel-
atively large wavelengths considered. By combining measurements
from pairs of radio telescopes, spatial frequency information can be
retrieved from the observed sky. Each pair of telescopes forms a base-
line and measures a so-called visibility corresponding to a Fourier
coefficient of the sky brightness distribution. By sampling the Fourier
plane with these measurements, an observation with a uniform aper-
ture is approximated using aperture synthesis. Since the telescope
acquires only a finite number of measurements and since the Fourier
plane is not sampled uniformly, the problem is ill-posed and an ac-
curate image cannot be reconstructed simply by inverting the Fourier
transform. Instead, when inverting the measuring process directly as
described a so-called dirty image is obtained: a reconstruction of the
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Figure 1. A diagram of a SPIDER instrument design proposed with 37 PICs
with lenslets attached to them. Image credit: Kendrick et al. (2013).

sky brightness convolved with the point spread function (PSF) of
the telescope configuration. In order to recover an accurate image of
the sky brightness, techniques to regularized inverse problems are
typically considered.
One method for solving this inverse problem is variational regular-

ization. Variational regularization techniques combine a data fidelity
component relative to a forward model with a regularizer in order to
constrain and stabilize the problem. Regularizers for these algorithms
encode prior information about the images. An example of modern
model-based iterative methods applied to radio interferometry can be
found in Pratley et al. (2018), which adopt convex optimization tech-
niques to solve the variational regularization optimization problem.
An application of these techniques to SPIDER imaging can be found
in Pratley & Mcewen (2021). While these techniques can be dis-
tributed to reduce the reconstruction time (Pratley et al. 2019), they
are computationally expensive as they evaluate the measurement op-
erator that models the instrument at each iteration of the optimization
process. Besides the computational cost of these algorithms, they also
adopt handcrafted priors (e.g. ℓ1 sparsity in a wavelet representation)
that, while general, are not tailored to the images of interest.
An alternative tomodel-based algorithms, such as variational regu-

larization, are data-driven algorithms that learn the prior information
from training data. Since the prior is implicitly specified by the train-
ing data, data-driven methods are typically able to achieve higher
reconstruction quality than by using handcrafted priors, provided the
training distribution matches the target distribution well. Learned
methods that are completely independent of the measurement opera-
tor and attempt to learn a directmapping frommeasurements to target
image, however, are generally not effective. Thus, learned methods
typically combine some model-based information, like the measure-
ment operator, with prior information learned from training data.
Learned data-driven approaches broadly fall into three categories,
differentiated by the degree to which model-based information such
as the measurement operator is encoded or leveraged. Learned regu-
larization methods (e.g. Lunz et al. 2018; Li et al. 2020) are iterative
in nature and make full use of the measurement operator in each iter-
ation; consequently, they achieve excellent reconstruction quality by
exploiting full knowledge of the measurement operator, along with
learned prior information, but are generally highly computationally
demanding. Learned sequential methods (e.g. Jin et al. 2017), on
the other hand, simply pre- and/or post-process data with learned
models in observation and/or image space; consequently, while they

nevertheless provide good quality reconstructions they are limited by
the fact that they only evaluate the measurement operator very few
times (sometimes just once). This however does make these meth-
ods substantially more efficient computationally. Learned iterative
methods (e.g. Adler & Öktem 2017), also called unrolled methods,
provide a balance by designing a learned model that attempts to un-
roll a small number of iterations of iterative approaches, encoding
the measurement operator into the model; consequently, they typ-
ically achieve superior reconstruction quality to learned sequential
methods exploiting greater knowledge of the measurement operator
and are more computationally efficient than learned regularization
methods.
Many suchmethods were originally proposed in themedical imag-

ing context (CT, MRI, PAT) and are based on deep learning ap-
proaches (e.g. Adler & Öktem 2017, 2018; Arridge et al. 2019). In
the field of radio astronomy learned image reconstruction techniques
were first considered byMcEwen &Allam Jr (Allam Jr 2016), where
super resolution convolutional neural networks (SRCNN; Dong et al.
2016) were applied to post-process dirty radio interferometric im-
ages. These networks were considered for cases where the exact tele-
scope PSF is known, as well as for the PSF-unaware case, highlight-
ing the potential of learning a generalized network that works with
unseen telescope configurations. Although, performance was rela-
tively poor for this rudimentary approach. More recent applications
of learned post-processing methods in radio astronomy have been
considered using learned denoisers (Terris et al. 2019), convolutional
autoencoders (Gheller &Vazza 2021), and super resolution networks
(Connor et al. 2022). The use of plug-and-play (PnP; Venkatakrish-
nan et al. 2013) denoisers within iterative reconstruction methods
has also been considered for radio interferometric imaging (Terris
et al. 2022), although such approaches still require many evaluations
of the measurement operator during imaging.
While we draw inspiration from these prior works on learned

imaging for interferometry, in this paper we develop new learned
imaging techniques, specifically targeting the SPIDER instrument.
Our primary goal is reducing computational cost, while of course still
ensuring high quality reconstructions. Reducing the computational
cost of recovering images from raw SPIDER measurements would
open up the possibility of real-time imaging with SPIDER, which
would afford numerous new applications. Consequently, we develop
a learned sequential method that requires only a single evaluation
of the measurement operator. While reconstruction quality for this
method is similar to current state-of-the-art variational regularization
techniques, computational time is orders ofmagnitude faster.We also
develop a learned iterative method, trading off a small increase in
computational time compared to the learned sequential method, but
that nevertheless remains orders of magnitude faster than traditional
approaches, while achieving a further improvement in reconstruction
quality.
The remainder of the paper is structured as follows. Section 2 in-

troduces the measurement process of interferometric imagers and the
particular imaging configuration of the SPIDER instrument, as well
as discussing the inverse imaging problem. Variational and learned
approaches for the inverse imaging problems are reviewed in Sec-
tion 3. In Section 4 we present two approaches to model the SPIDER
instrument: alongside the standard non-uniform Fourier transform
approach considered previously (Pratley & Mcewen 2021), we also
introduce a newmodelling approach for SPIDER based on the Radon
transform. In Section 5 we propose our learned methods for recon-
struction from interferometric measurements. Section 6 evaluates the
performance of the reconstruction methods when applied to natural
images, their robustness to additional noise, and generalization po-
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Table 1. The parameters of the SPIDER concept design proposed in Kendrick
et al. (2013).

Parameter Value

Spectral range 500-900 nm
Lenslet Diameter 8.75 mm
Longest Baseline 0.5 m
Number of Lenslets per PIC card 24
Number of PIC cards 37
Number of Spectral Bins 10

tential of these methods to smaller datasets of galaxy or satellite
images. Finally, concluding remarks are made in Section 7.

2 SPIDER INSTRUMENT

The SPIDER instrument measures incoming light through pairs of
separated lenses and combines it in waveguides on a PIC chip to
form interferometric baselines. All the operations to make the in-
terferometric measurements are performed on the chip, resulting in
a small form-factor for the system. The concept design introduced
in Kendrick et al. (2013) uses a linear array of lenslets attached to
one PIC chip to measure several baselines using a 1D interferom-
eter. Several of these so-called spokes are then mounted radially
resulting in a two-dimensional sampling pattern. While in typical
interferometers the information of all receivers can be combined into
interferometric measurements, resulting in a total of 𝑁 (𝑁 − 1)/2
measurements for 𝑁 lenslets, in the SPIDER design lenslets can only
be combined within one PIC chip, resulting 𝑁/2 baselines per PIC
module. To increase the number of baselines gathered from one PIC
card, different wavelengths of light are measured. Because the spatial
frequency measured depends on the separation of the lenslets and the
wavelength of the light, the number of baselines is multiplied by the
number of wavelength bins observed. The technique of incorporat-
ing spectral information frommeasurements at different wavelengths
in a single reconstruction is called multi-frequency synthesis and is
common in radio interferometry (Sault & Conway 1999).
By mounting multiple PIC chips as radial spokes on a disc, a 2D

interferometer is created. In doing so a radial sampling profile is
created for the 𝑢𝑣-plane. In the concept of Kendrick et al. (2013), 37
spokes of PICs with 24 lenslets each are used. The measured light
frequency spectrum is from 500nm to 900nm with 10 spectral bins.
This results in 120 baselines per spoke and a total of 4440 measured
Fourier components. The parameters for the configuration used by
Kendrick et al. (2013) can be found in Table 1 and the lenslet layout
and the 𝑢𝑣-sampling are shown in Figure 2.
The interferometric measurements at the baseline (spatial) fre-

quency 𝝃 = (𝑢, 𝑣) represent samples of the 2D Fourier transform
of the image 𝑓 (𝝌), with spatial coordinate 𝝌, as given by the van
Cittert-Zernike theorem (Zernike 1938):

𝑓 (𝝃) =
∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝝌) e−i 2𝜋𝝌 ·𝝃d𝝌, (1)

which is a continuous unitary Fourier transform of the signal. The
baselines are determined by the spatial distance between the lenslets
on the PIC with respect to the observed wavelength of the light.
To recover an image from the Fourier measurements one needs the
inverse of Equation 1,

𝑓 (𝝌) =
∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝝃) ei 2𝜋𝝌 ·𝝃d𝝃, (2)
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Figure 2. (Left) The physical locations of the lenslets of the 2D interferometer
as detailed in the design proposed in Kendrick et al. (2013). The lenslets on
each of the radial spokes are mounted to their respective PIC. (Right) The
measured baselines of the interferometric measurements between pairs of
lenslets on the PICs of the SPIDER instrument. The amount of baselines
is increased by measuring at different spectral frequencies. Note that the
measurements all lie in the same direction as the directions of the spokes,
since measurements are only made using pairs of lenslets on 1 PIC.

which is only possible in theory when one has complete knowledge
of the continuous Fourier representation 𝑓 (𝝃). In practice this is not
the case.
The approaches for modelling the SPIDER instrument introduced

in Section 4 require an (upsampled) discrete Fourier transform
(DFT). The unitary DFT for an 𝑁1×𝑁2 image is an operator mapping
from R𝑁1×𝑁2 → C𝑀1×𝑀2 , we henceforth use the same 𝑓 notation
for the continuous and discrete Fourier transform as the meaning will
be clear from the context. The unitary DFT is defined by

𝑓 (𝝃𝑘𝑙) =
1

√
𝑁1𝑁2

𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

𝑓 (𝝌𝑖 𝑗 ) e
−i 𝝌𝑖 𝑗 ·𝝃𝑘𝑙 , (3)

and the unitary inverse DFT by

𝑓 (𝝌𝑖 𝑗 ) =
1

√
𝑀1𝑀2

𝑀1∑︁
𝑘=1

𝑀2∑︁
𝑙=1

𝑓 (𝝃𝑘𝑙) ei 𝝌𝑖 𝑗 ·𝝃𝑘𝑙 . (4)

The interferometric measurement process (Equation 1) can be
written in the compact, discretized form

𝒚 = 𝚽𝒙 + 𝒏, (5)

where the linear measurement operator 𝚽 : 𝑋 → 𝑌 , maps the
unknown image 𝒙 ∈ 𝑋 ⊂ R𝑁 to the set of noisy measurements
𝒚 ∈ 𝑌 ⊂ C𝑀 (here Fourier components of the weighted sky-
brightness), with 𝒏 ∈ 𝑌 ⊂ C𝑀 some type of measurement noise.
The interferometric measurement operator corresponds to a non-
uniformly sampled Fourier transform.
The limited number of lenslets of the telescope results in a lim-

ited sampling of the 𝑢𝑣-plane. Since the Fourier domain is sampled
incompletely, the measurement operator is ill-posed, and it cannot
simply be inverted to find a solution to the inverse problem. Because
of the ill-posedness of the operator, prior information on the solution
is needed to regularize the inversion. Therefore, approaches such as
sparse regularization are needed to stably recover a solution for the
reconstruction. Underlying the sparse regularization is the idea that
natural signals (e.g. astronomical images) are sparse or compressible
in a suitable basis or frame (e.g. wavelet bases).
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3 INVERSE IMAGING APPROACHES

We briefly recall the state-of-the-art variational techniques that are
applied to solve the interferometric imaging problem and how these
methods can be enhanced or replaced by using learned approaches
that make use of deep learning.

3.1 Variational regularization

To recover a solution to the inverse problem stated in Equation 5, we
find a solution for 𝒙 that trades off matching the data and the prior
information encoded in the regularizer. Variational regularization
approaches do this by posing an appropriate optimization problem,
which is then often solved by proximal optimization algorithms.

3.1.1 Optimization problems

Trading off data fidelity and prior information can be achieved by
obtaining a solution to the following minimization problem:

𝒙★ = arg min
𝒙∈𝑋

L(𝚽𝒙, 𝒚) + 𝜆S(𝒙), (6)

where 𝜆 is the regularization parameter, and L(𝚽𝒙, 𝒚) and S(𝒙) are
a data fidelity and regularization functional respectively.
A common optimization strategy is to use a regularizer that pro-

motes sparsity in a particular frame. The signal 𝒙 ∈ R𝑁 can be
represented in a dictionary 𝚿 ∈ R𝑁×𝐷 by 𝒙 = 𝚿𝜶, where 𝜶 ∈ R𝐷 .
Natural signals typically exhibit stronger sparsity if the dictionary is
redundant, i.e. 𝐷 > 𝑁 (Gribonval &Nielsen 2003; Bobin et al. 2007;
Starck et al. 2010). It is therefore often beneficial to use dictionaries
which are a concatenation of different basis of frames, e.g. Dirac and
Daubechies wavelets (Carrillo et al. 2012, 2013a).
The minimization problem can be expressed in the synthesis for-

mulation, where the image 𝒙★ is synthesized from dictionary ele-
ments by 𝒙★ = 𝚿𝜶★. Alternatively, the problem is expressed in the
so-called analysis setting where the image 𝒙★ is recovered directly
while promoting the sparsity of 𝚿∗𝒙★. If 𝚿 is a tight frame the ad-
joint 𝚿∗ is equal to the self-inverse 𝚿† and the two formulations are
equivalent. However, in a general overcomplete dictionary (such as a
concatenation of two bases) the analysis formulation is often found
to yield superior reconstruction quality (e.g. Carrillo et al. 2012,
2013a).
The data fidelity term is typically the ℓ2-norm of the residuals

(which can also be interpreted as the log-likelihood for the case of
Gaussian noise). The optimization functional in the unconstrained,
analysis setting then reads

𝒙★ = arg min
𝒙∈𝑋

‖𝚽𝒙 − 𝒚‖2
ℓ2
+ 𝜆‖𝚿†𝒙‖ℓ1 , (7)

assuming identity covariance (typically measurements are weighted
to have unit variance; as discussed in Section 4.1).
In the unconstrained setting the optimization depends on a good

choice of the hyperparameter 𝜆 to find a good balance between the
data fidelity and the sparsity of the signal. The problem can also be
formulated as a constrained optimization problem

𝒙★ = arg min
𝒙∈𝑋

‖𝚿†𝒙‖ℓ1 , s.t. ‖Φ𝒙 − 𝒚‖ℓ2 < 𝜖, (8)

where we seek the most sparse 𝚿†𝒙 that satisfies the constraint with
some 𝜖 > 0 on the datamisfit. The hyperparameter 𝜖 can be estimated
from an estate of the noise level (Pratley et al. 2018).

3.1.2 Proximal optimization algorithms

The optimization problems described in the previous subsection can
often be solved by proximal optimization algorithms that leverage a
proximity (or proximal) operator. The proximity operator of a (proper,
semi-continuous) convex function 𝜆ℎ (with 𝜆 > 0) maps 𝒗 ∈ R𝑁 to
a unique solution to the (strongly convex) minimization problem

prox𝜆ℎ (𝒗) = argmin
𝒙∈𝑋

𝜆ℎ(𝒙) + 1
2
‖𝒙 − 𝒗‖2

ℓ2
. (9)

The parameter 𝜆 sets the balance between the squared ℓ2-distance
to 𝒗 and the value of ℎ. Many common proximal operators admit
an analytical solution or at least a linear time iterative solution. The
fixed point of a proximal operator is the global minimum of ℎ (Boyd
& Vandenberghe 2004; Combettes & Pesquet 2011).
Proximal splitting methods use proximal operators to estimate the

solution to the inverse problem by splitting the objective function
in separate steps for the different optimization functionals. A review
of different proximal splitting methods can be found in Combettes
& Pesquet (2011). The simplest proximal splitting algorithm is the
proximal gradient method, which consists of a gradient update step,
followed a proximal update step:

𝒙𝑖+1 = prox𝜆S (𝒙𝑖 − ∇L(Φ𝒙𝑖)) . (10)

In this manner sparsity-promoting priors S(𝒙) that are not differen-
tiable can be supported (e.g. ℓ1 sparsity in a wavelet basis).
Proximal splitting methods have found numerous applications

to radio interferometric imaging problems in astronomy: Douglas-
Rachford splitting (e.g. Carrillo et al. 2012, 2013a), simultaneous-
direction method of multipliers (SDMM; e.g. Carrillo et al. 2013b),
alternating direction method of multipliers (ADMM; e.g. Pratley
et al. 2018; Pratley & Mcewen 2021), and the proximal gradient
method (Cai et al. 2018b,a, 2019). Besides reconstruction, proximal
methods have also been developed to perform uncertainty quantifi-
cation for radio interferometric imaging (Cai et al. 2018b,a, 2021).
In this paper we compare our new learned methods with a primal

dual hybrid gradient (PDHG; Chambolle & Pock 2011) method for
finding a solution to the constrained analysis problem (Equation 8)
as described in Onose et al. (2016). For the dictionary representation
of our signal we chose the SARA representation, i.e. a combination
of the Dirac basis as well as the first eight Daubechies wavelets,
Db1-Db8 (Daubechies 1992), which was shown to work well for
astronomical reconstruction (Carrillo et al. 2012, 2013a).

3.2 Learned methods

Traditional approaches handle the ill-posedness of the inverse prob-
lems by using prior information through the use of handcrafted regu-
larizers that, while general, fail to capture detailed prior information
of real data. Learned methods attempt to overcome this by instead
enforcing the prior information implicitly specified by training data,
ensuring that the prior information promotes images which are in
some sense similar to the training data.
Since learned methods rely on learning the prior information for

the imaging problem from the data they are provided, reconstruc-
tive power depends on the quality and quantity of the training data
provided. Furthermore, learned methods have to be trained before
evaluation can take place, a process that may take some time, yet
only has to be performed once. Once training is done, imaging can
then be performed rapidly. If training data in the form of input-output
pairs are available, the network can be trained in a supervised ap-
proach, with the network receiving the input measurements and their
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respective targets. When input-output pairs are not available, the net-
works can be learned adversarially, where the network is trained using
a distribution of measurements to fit an independent distribution of
target outputs, which is sometimes interpreted as semi-supervised
learning. If no training outputs are available the methods need to be
learned in a self-supervised way.
Learned methods that are completely independent of the measure-

ment operator and learn a direct mapping from measurements to
target are generally not effective since they are difficult to train and
require huge volumes of training data (Adler & Öktem 2017). There-
fore, most learned approaches incorporate the measurement operator
in some capacity to encode or leverage the mapping from the mea-
surement to the reconstruction space. The learned network is then
constructed around that. As briefly overviewed in Section 1, learned
data-driven imaging approaches broadly fall into three categories,
differentiated by the degree to which model-based information such
as the measurement operator is encoded or leveraged. By making
greater use of the measurement operator superior performance can
often be achieved but at the cost of increased computational time.
We subsequently review each of these three classes of approach.

3.2.1 Learned regularization

Onemethod for learning the prior information from training data is by
using a learned regularizer in conjunction with traditional optimiza-
tion schemes. These algorithms aim to replace the regularizer S in
Equation 6 with a learned regularizer, encoding the prior information
in the training data.
A common approach is to replace the application of the proximal

operators with a learned map to compute the update. These methods
typically adopt plug-and-play (PnP) denoisers that are used instead of
a proximal update step (Venkatakrishnan et al. 2013; Ryu et al. 2019).
A variant of a PnP denoiser was applied to radio interferometry by
Terris et al. (2022).
Various other pioneering approaches to learned regularization

have also been considered. The regularizer can be formed as the
norm of a learned dictionary that translates to a sparse representa-
tion of the data (Xu et al. 2012) or by using a constraint based on
a learned scattering transform (Dokmanić et al. 2016) in place of a
traditional regularizer. Alternatively, methods are used that imple-
ment deep neural networks to act as regularizers (e.g. Li et al. 2020;
Kobler et al. 2020) as well as methods that train adversarially learned
neural networks (e.g. Lunz et al. 2018; Mukherjee et al. 2020).
While learned regularization approaches often achieve excellent

reconstruction quality since they make full use of the measurement
operator, along with learned prior information, they are computa-
tionally demanding since the full measurement operated must be
evaluated for each iteration.

3.2.2 Learned sequential methods

An alternative approach is to consider a model that is split up into
a sequence of operations. Sequential models are a composition of a
learned operator acting in the data space 𝑪 𝜃 : 𝑌 → 𝑌 , an adjoint or
pseudo-inverse mapping from the data to the reconstruction space,
𝑨 : 𝑌 → 𝑋 , and a learned operator acting in the image space
𝑩𝜃 : 𝑋 → 𝑋 , where learned operators depend on the parameters 𝜃
(e.g. Zheng et al. 2020):

𝚽†
𝜃
= 𝑩𝜃 ◦ 𝑨 ◦ 𝑪 𝜃 . (11)

When either the operator in the reconstruction domain, 𝑩𝜃 , or in

the data domain, 𝑪 𝜃 , is set to be the identity operator, we recover
learned pre-processing or learned post-processing methods respec-
tively. Most sequential methods are of the post-processing type since
they are relatively easy to train as learning of the network is decou-
pled from the mapping from measurement to reconstruction space;
the post-processing network can thus be trained independently, re-
ducing training time substantially (e.g. Jin et al. 2017; Chen et al.
2017; Yi & Babyn 2018). Post-processing methods have been used
in astronomy using super resolution networks (Allam Jr 2016; Con-
nor et al. 2022), denoisers (Terris et al. 2019), and convolutional
autoencoders (Gheller & Vazza 2021).
Post-processing methods only apply the adjoint or pseudo-inverse

of the measurement operator once and so are highly computationally
efficient. However, since the measurement operator is not continu-
ally leveraged, reconstruction quality suffers as a consequence. To
compensate sequential models typically employ more elaborate net-
work architectures (such as U-Nets; Ronneberger et al. 2015) than
those adopted in learned iterative methods. Nevertheless, learned
post-processing approaches can sometimes struggle to achieve the
reconstruction quality of learned iterative approaches.

3.2.3 Learned iterative methods

Learned iterative methods unroll a small, fixed number of iterations
of an iterative solver, e.g. proximal gradient method, and replace
the proximal operators with learned convolutional neural networks
(CNNs) (Gregor & LeCun 2010). The CNNs used are typically small
feed-forward networks with just a few convolutional layers (e.g. Yang
et al. 2017; Putzky&Welling 2017;Adler&Öktem2017), in contrast
to the architectures used in sequential models. To turn the proximal
gradient method of Equation 10 into a learned method we replace
the proximal operator with a learned network 𝚲𝜃,𝑖 :

𝒙𝑖+1 = 𝚲𝜃,𝑖 (𝒙𝑖 − ∇L(Φ𝒙𝑖)) , (12)

where 𝚲𝜃,𝑖 can be a different network for each iteration 𝑘 or one
network, 𝚲𝜃,𝑖 = 𝚲𝜃 . The latter scenario results in learning an ap-
proximation to the proximal operator.
Hauptmann et al. (2020) propose evaluating the operator at differ-

ent, increasingly finer resolutions/scales such that the full resolution
operator only needs to be evaluated once. Combining this with a
multiscale neural net like the U-Net (Ronneberger et al. 2015) cuts
down evaluation time (and thus training time) significantly, while
also reducing memory requirements. Other advancements are con-
sidered by learning adversarially trained versions of existing models
(Mukherjee et al. 2021b). Also, combining approaches using learned
regularizers with learned iterative methods, provides algorithms that
are closer to the traditional optimization methods and allow to prove
rigorous convergence results (Mukherjee et al. 2021a). Finally, the
inclusion of the explicit measurement operator in the learned iter-
ative models improves the robustness and generalizability (Boink
et al. 2020), while at the same time reducing the number of trainable
parameters and hence reducing the requirement of large training data
volumes.
Since learned iterative methods only unroll a small number of

iterations, the measurement operator is only evaluated sparingly,
making the learned iterative approaches typically faster than the
iterative solvers on which they are based. While the integration of
the measurement operator in the network does require its evaluation
during training, resulting in considerably longer training times than
for the sequential models, encoding the measurement operator in the
model typically results in superior performance to learned sequential
methods, for only a modest increase in computational time.
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4 MODELLING THE SPIDER INSTRUMENT

In order to reconstruct an image from interferometric measurements
we need a model for our measurement process in the form of a mea-
surement operator. The accuracy of the measurement operator is a
critical factor for the accuracy of the reconstruction and its compu-
tational complexity is reflected in both training and reconstruction
time.
For interferometric imaging, the measurement process is given

by Equation 1. In a discretized version of Equation 1, following the
notation of Equation 5, the measurement operator 𝚽 : R𝑁 → C𝑀
is a non-uniform discrete Fourier transform (NUDFT) mapping an
image in R𝑁 to 𝑀 non-uniformly distributed Fourier measurements.
For an image 𝒙 = 𝑓 (𝝌), with spatial pixel coordinates 𝝌𝑖 𝑗 at the

𝑖-th and 𝑗-th pixels of the image, and Fourier measurements 𝒚 = 𝑓 (𝝃)
at non-uniformly distributed Fourier coordinates 𝝃𝑘 = (𝑢𝑘 , 𝑣𝑘 ) (in
contrast to Equations 3 and 4), the unitary NUDFT can be expressed
as

𝑓 (𝝃𝑘 ) =
1
√
𝑁

𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

𝑓 (𝝌𝑖 𝑗 ) e
−i 𝝌𝑖 𝑗 ·𝝃𝑘 , (13)

which is a finite sum over all pixels (𝑖, 𝑗) of an 𝑁1 × 𝑁2 image with
a total number of 𝑁 = 𝑁1 × 𝑁2 pixels.
To construct the dirty image 𝑓𝐷 (𝝌), the adjoint of the measure-

ment operator is applied, which maps from the non-uniformly dis-
tributed Fourier measurements to a uniformly sampled image

𝑓𝐷 (𝝌𝑖 𝑗 ) =
1
√
𝑁

𝑀∑︁
𝑘=1

𝑓 (𝝃𝑘 ) ei 𝝌𝑖 𝑗 ·𝝃𝑘 . (14)

We can approximate the inverse Fourier transform (Equation 2) by
evaluating a weighted, finite Fourier series at the non-uniformly dis-
tributed Fourier coordinates. The accuracy of the resulting pseudo-
inverse DFT is determined by the choice of sampling 𝝃𝑘 and the
corresponding measurement weights 𝑤(𝝃𝑘 ) and is given by

𝑓 (𝝌𝑖 𝑗 ) ≈
𝑀∑︁
𝑘=1

𝑤(𝝃𝑘 ) 𝑓 (𝝃𝑘 ) ei 𝝌𝑖 𝑗 ·𝝃𝑘 . (15)

The complexity of a naive realization of Equations 13, 14 and
15 would be O(𝑁𝑀), however efficient numerical NUDFT schemes
make use of interpolation to map the non-uniformly distributed mea-
surements to a uniformly sampled grid and take advantage of the Fast
Fourier transform (FFT) to reduce complexity.
In this section we introduce two efficient methods for modelling

the measurement operator of the SPIDER instrument. First, we con-
sider the non-uniform Fast Fourier transform (NUFFT; Duijndam &
Schonewille 1997), which can be used for arbitrary sampling distri-
butions. Second, we present a new approach that exploits the specific
sampling distribution of the SPIDER instrument, making use of sim-
ilarities of the problem to that of parallel Radon transform of X-ray
tomography.

4.1 NUFFT

Using FFTs with a (de)gridding interpolation operator to approx-
imate the non-uniformly distributed Fourier measurements lowers
the computational cost significantly. The standard operator used in
radio interferometry can be expressed as a composition of operators
(e.g. Pratley et al. 2018)

𝚽 = 𝑮𝑭𝒁𝑫, (16)

where 𝑫 : R𝑁 → R𝑁 is an operator that corrects for the gridding
operation (discussed further below), 𝒁 : R𝑁 → R𝛼

2𝑁 is a zero-
padding operator that zero pads the image in the spatial dimension to
provide oversampling of a factor 𝛼 in each direction in the Fourier do-
main, 𝑭 : C𝛼2𝑁 → C𝛼2𝑁 is a 2-dimensional unitary FFT operator,
and 𝑮 : C𝛼2𝑁 → C𝑀 is the degridding operator that interpolates
the measurements off of the uniform Fourier grid via convolution
with a spreading kernel centred at the irregularly spaced measure-
ments points in the Fourier domain. The operator 𝑫 corrects for the
convolution with this spreading kernel by a pointwise division of the
image with the Fourier transform of the spreading kernel.
Equation 16 describes the measurement process, going from the

observable to the measurement space. The adjoint of this operation,
𝚽∗ : C𝑀 → R𝑁 is readily obtained as

𝚽∗ = 𝑫𝒁∗𝑭†𝑮∗, (17)

where we made use of the self-adjointness of the convolution correc-
tion operator(𝑫∗ = 𝑫). The gridding operation 𝑮∗ : C𝑀 → C𝛼2𝑁
convolves the non-uniformly distributed measurements with the
spreading kernel to grid them on a uniformly sampled mesh, on
which the inverse FFT, 𝑭† : C𝛼2𝑁 → C𝛼

2𝑁 , is applied to obtain
an image, which is restricted to R𝑁 via symmetric cropping through
the operator 𝒁∗ : R𝛼2𝑁 → R𝑁 , and deconvolved via pointwise
division with the Fourier inverse of the spreading kernel, using the
operator 𝑫, to correct for the gridding operation.
The efficiency of the NUFFT schemes hinges upon a suitable

choice of the spreading kernel, in particular its localization in the
spatial and frequency domains and the ease of computing the Fourier
transform of the kernel for deconvolution. The kernel needs to have a
small support in frequency space to be computationally inexpensive,
while also having a small support in the image domain as to mini-
mize the effects of aliasing. Here we adopt the Kaiser-Bessel (KB)
kernel (Jackson et al. 1991; Fessler & Sutton 2003). The kernel is
truncated in the Fourier domain to limit its support and therefore its
computational cost. Since these kernels are linearly separable, i.e.
the kernel can be written 𝑐(𝑢, 𝑣) = 𝑐(𝑢)𝑐(𝑣), we consider the kernel
in only one dimension:

𝑐(𝑢) =


1
𝐽

𝐼0

(
𝛽

√︃
1−( 2𝑢

𝐽
)2
)

𝐼0 (𝛽) for |𝑢 | ≤ 𝐽/2,
0 for |𝑢 | > 𝐽/2,

(18)

where 𝐼0 is the zeroth-order modified Kaiser-Bessel function, 𝛽 de-
termines the shape of the kernel, and 𝐽 the support of the kernel. The
correction for applying this convolutional kernel can be calculated
analytically by taking the inverse Fourier transform of the kernel to
get (Jackson et al. 1991; Fessler & Sutton 2003)

𝑐(𝑥) =

sin

(√︁
𝜋2𝑥2𝐽2 − 𝛽2

)
√︁
𝜋2𝑥2𝐽2 − 𝛽2


−1

. (19)

The correction operator can then be found by calculating

𝐷 (𝝌𝑖 𝑗 ) = 𝑐

(
𝑖

𝑁1
− 1
2

)
𝑐

(
𝑗

𝑁2
− 1
2

)
. (20)

Using 𝛽 = 2.34𝐽 for the spread of this Kaiser-Bessel kernel gives
similar performance to the optimal min-max interpolation kernel
proposed by Fessler & Sutton (2003).
The pseudo-inverse of the NUFFT is obtained by including the

measurement weights in the Fourier sum

𝚽† = 𝚽∗𝑾 = 𝑫𝒁∗𝑭𝑮∗𝑾, (21)
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where𝑾 is a diagonal matrix with elements𝑾𝑘𝑘 = 𝑤(𝝃𝑘 ) given by
the weight for each of the measurements.
In radio astronomy, interferometric measurements are typically

weighted according to one of three weighting schemes: natural, uni-
form, or robust weighting (Taylor et al. 1999). Natural weighting
maximizes the sensitivity of the observation and weights each visi-
bility by the uncertainty on the measurement 𝑾Natural

𝑘,𝑘
= 𝜎−2

𝑘
, with

𝜎𝑘 the uncertainty on the measured visibility 𝒚𝑘 . Natural weighting
is akin to statistical whitening of data and ensures unit variance of
the uncertainty on the measurements and gives the highest signal-to-
noise ratio for detecting weak sources.
Since there is typically a higher density of samples near the (𝑢, 𝑣)

origin in radio interferometry, natural weighting emphasizes low-
frequency measurements, which can be undesirable when imaging
sourceswith both large- and small-scale structure.Uniformweighting
is an alternative weighting scheme that accounts for this by weighting
the density of the sampling distribution by𝑾Uniform

𝑘,𝑘
= 𝜎−2

𝑘
𝑁−1
𝑠 (𝑘),

where 𝑁𝑠 (𝑘) is typically the number of measurements in a sym-
metrical region (either square or circular) with width 𝑠 around the
measurement 𝒚𝑘 . If the measurement uncertainties are varying this
can be replaced by the sum of the reliability weights in this region
𝑁𝑠 =

∑
𝑘′ 𝜎

−2
𝑘′ , where 𝑘 ′ are the indices of the measurements in

the local region around measurement 𝑘 . The width 𝑠 of the region
is typically chosen to be the size of the size of the elements of the
Fourier grid.
Lastly, robust weighting considers a trade-off between natural and

uniform weighting, controlled by a robustness parameter. In this
paper we use uniform weighting and weight the measurements ac-
cording to the density of the sampling distribution as well as their
uncertainties.

4.2 Sub-scale operators

An approach to reduce the computational cost of the measurement
operator is to evaluate it at a lower resolution and restricted Fourier
space. The forward and adjoint of the measurement operator can be
evaluated at a series of scales by applying a filter bank of low pass and
high pass partition of unity filters; see Pan & Betcke (2022) for the
details of such filter banks. Instead of using smooth partition of unity
filters as used in Candès et al. (2006); Pan & Betcke (2022), we use
binary 0-1 partition of unity filters. Since the NUFFT evaluates the
FFT on an upsampled grid by zero-padding the image, the periodicity
in the image domain and the corresponding decay of the Fourier
coefficients are reinstated. We refer to these sub-scale measurement
operators as𝚽𝑖 : R𝑁𝑖 → C𝑀𝑖 , its adjoint𝚽∗

𝑖
: C𝑀𝑖 → R𝑁𝑖 , and its

pseudo-inverse 𝚽†
𝑖
: C𝑀𝑖 → R𝑁𝑖 , operating on the reduced image

scale 𝑁𝑖 and the number of measurements restricted to the reduced
Fourier space, 𝑀𝑖 . Since these sub-scale operators are evaluated on
a smaller image scale as well as a restricted Fourier space, they
are considerably more computationally efficient than the full-scale
measurement operators.

4.3 NU-Radon method

For the NUFFT the measurement weights are determined by con-
sidering the 2D sampling density of the instrument. In this section
we propose an alternate, principled approach to derive these weights
based on the similarities of the SPIDER sampling to the sampling
induced by the 2D Radon transform.

The Radon transform,

𝑹 𝑓 (𝑟, 𝜙) = 𝑹𝜙 𝑓 (𝑟) =
∫
𝑥 ·𝜙=𝑟

𝑓 (𝑥)d𝑥, (22)

models the linear attenuation of photons passing through an object.
It maps the attenuation to a family of integrals along parallel lines,
parametrized in polar coordinates 𝜙, the angle of the projection, and
𝑟 the radial distance from the origin along that line. The Fourier slice
theorem

ˆ𝑹𝜙 𝑓 (𝜌) = 𝑓 (𝜌, 𝜙), (23)

expresses the equivalence of the 2D Fourier transform in polar coor-
dinates and the 1D Fourier transform along the detector coordinate of
the Radon transform, where 𝜌 is the distance in the Fourier domain
along the radial spoke at angle 𝜙.
The adjoint operation of theRadon transform is the back-projection

which can be used to recover the dirty reconstruction through

𝑓𝐷 (𝑟, 𝜙) =
∫ 𝜋

0

∫ ∞

−∞
ˆ𝑹𝜙 𝑓 (𝜌) ei 2𝜋𝑟𝜌 d𝜌 d𝜙. (24)

The inverse of the radon transform is the filtered back-projection and
includes a ramp filter |𝜌 |, which corresponds to the Jacobian of the
change from Cartesian to polar coordinates and which boosts the
power of high-frequency measurements:

𝑓 (𝑟, 𝜙) =
∫ 𝜋

0

∫ ∞

−∞
ˆ𝑹𝜙 𝑓 (𝜌) ei 2𝜋𝑟𝜌 |𝜌 | d𝜌 d𝜙. (25)

Using the Fourier slice theoremwe can express theNUDFT (Equa-
tion 13) in terms of the Radon transform, and in polar coordinates,
by

𝑓 (𝝃𝑘 ) = 𝑓 (𝜌𝑘 , 𝜙𝑘 ) =
1
4√
𝑁

√
𝑁∑︁

𝑖=1
𝑹𝜙𝑘

𝑓 (𝑟𝑖) e−i 𝑟𝑖𝜌𝑘 , (26)

where the measurements are gathered by taking a 1D NUDFT of the
Radon transform of the signal along a spoke at angle 𝜙𝑘 and

√
𝑁

corresponds to the diameter of the circle inscribed into the square
image. Similarly, we discretize the back-projection (Equation 24) to
obtain the dirty reconstruction

𝑓𝐷 (𝝌) = 1
4√
𝑁

𝑃∑︁
𝑝=1

𝑄∑︁
𝑞=1

ˆ𝑹𝜙𝑝
𝑓 (𝜌𝑞) ei 𝜌𝑞𝝌 ·𝜙𝑝 , (27)

where we Fourier transform the𝑄 non-uniformly distributed Fourier
measurements at radial distances 𝜌𝑞 for each of the spokes, followed
by back-projecting the signals for each of the 𝑃 projection angles 𝜙𝑝 .
Both the forward and adjoint operations of themeasurement opera-

tor use a 1D NUDFT which can be accelerated by using (de)gridding
in the form of a 1D NUFFT. The combined method of using the
Radon transform and the NUFFT can be described as:

𝚽 = 𝑵𝑹, (28)

where 𝑹 : R𝑁 → R𝑃
√
𝑁 is the Radon transform, and 𝑵 : C𝑀 →

R𝑃
√
𝑁 is the 1D NUFFT. Similarly, the adjoint operation is given by

𝚽∗ = 𝑹∗𝑵∗, (29)

where 𝑹∗ : R𝑃
√
𝑁 → R𝑁 is the back-projection operation, and

𝑵∗ : C𝑀 → C𝑁 is the 1D adjoint NUFFT.
To obtain the pseudo-inverse of the measurement operator, part

of the measurement weights are now informed by the ramp filter in
the inverse of the Radon transform (Equation 25). The ramp filter

RASTI 000, 1–20 (2023)



8 M. Mars et al.

for our non-uniformly distributed measurements are calculated as
𝑤Radon (𝝃) = ‖𝝃‖ℓ2 . The pseudo-inverse of the measurement opera-
tor is then defined as

𝚽† = 𝑹†𝑵†, (30)

where 𝑹† : R𝑃
√
𝑁 → R𝑁 is the filtered back-projection (with

weights 𝑤radon (𝝃)), and 𝑵† : C𝑀 → C𝑁 is the 1D inverse NUFFT
with measurements weights based on the sampling density of the
lenslets along one spoke.

4.4 Comparison

We implement both the NUFFT and NU-Radon methods in our
LeIA1code. The NUFFT approach is implemented on the CPU using
Numpy2 as a backend, as well as with GPU acceleration implemented
in TensorFlow3. The NU-Radon method is implemented by using
a modified version of the SciKit-Image4 Radon transform.
An overview of the computational complexity of the algorithms

can be found in Table 2, where the complexity is split into three
operations: calculating the Fourier transform, (de)gridding non-
uniformly distributedmeasurements, and computing theRadon trans-
form (when relevant)5. The NUDFT is computationally the most ex-
pensive approach, since the evaluation of the discrete Fourier trans-
form takes O(𝑁𝑀) operations. Both the NUFFT and NU-Radon
reduce the computational complexity by utilizing the FFT for cal-
culating the Fourier transform, though these gains are offset by the
computational cost for the gridding of the measurements and/or the
calculation of the (inverse) Radon transform.
For the particular SPIDER configuration considered (𝑁 = 256 ×

256, 𝑀 = 4440, and 𝑃 = 37), the NUFFT is the best approach in
terms of computational complexity. It might be beneficial to use the
NU-Radon method when the number of measurements is large (and
therefore the computation time is dominated by the (de)gridding
operations) or when the number of image pixels is large and the
number of spokes is modest (𝑃 ≤ log 𝑁).
Figure 3 shows the effect of reconstructing a dirty image using the

adjoint of the measurement operator applied to a set of simulated
Fourier measurements taken with the SPIDER instrument. For the
configuration of the SPIDER instrument, it appears that the NUFFT
is a more accurate approximation to the NUDFT.
Figure 3 indicates that the dirty reconstructions are mostly dom-

inated by low-frequency structures. The measurement weights used
in the pseudo-inverse operations boost the power of high-frequency
measurements by weighting the measurements based on the 2D sam-
pling density for the NUFFT and the 1D sampling density along each
spoke for the NU-Radon approach (which also includes the weights
of the filtered back-projection).
Figure 4 compares the different pseudo-inverse implementations.

The figure indicates that the pseudo-inverse NUFFT provides a good
trade-off between introducing high-frequency information and not
having strong high-frequency artefacts. The pseudo-inverse NU-
Radon implementation provides sharper features, yet also includes
more high-frequency artefacts. In the remainder of the paper we use

1 https://github.com/astro-informatics/LeIA
2 https://numpy.org/
3 https://www.tensorflow.org/
4 https://scikit-image.org/
5 Recall 𝑁 denotes the number of image pixels, 𝑀 the number of measure-
ments, 𝐽 the support of the spreading kernel, and 𝑃 the number of spokes of
the SPIDER instrument.

the NUFFT approach for our experiments. Due to the lower com-
putational cost of its implementation and its generalizability to any
sampling distribution for future applications.

5 LEARNED INTERFEROMETRIC IMAGING FOR
SPIDER

In this sectionwe present our two learned approaches for the SPIDER
imaging problem. Both approaches reconstruct images from interfer-
ometric measurements and use the adjoint or pseudo-inverse of the
measurement operator to create an initial reconstruction. Our ap-
proaches fit within the exiting learned post-processing framework
(e.g. Jin et al. 2017), with the second method introducing a novel
post-processing architecture.
The first method is a post-processing learned sequential method

to improve the initial reconstruction estimated by the pseudo-inverse
and remove artefacts. This approach is highly computationally ef-
ficient, requiring only one application of the pseudo-inverse of the
measurement operator to compute the initial reconstruction. We ex-
pect final reconstruction quality to be good but limited since no
further knowledge of the measurement operator is exploited beyond
the initial reconstruction.
The second approach is a learned iterativemethod and differs to the

former by including updates to the reconstruction that utilize knowl-
edge of themeasurement operator. Since additional application of the
measurement operator is required this results in a modest increase in
computational time compared to our post-processing method. How-
ever, we expect this to be offset by an increase in reconstruction
quality due to further exploitation of the measurement operator.
We do not consider learned regularization approaches further since

the iterative nature of such approaches would result in a significant
increase in computational time, and our primary objective is a very
low computational cost during imaging in order to facilitate real-time
imaging with SPIDER.

5.1 Learned post-processing (U-Net)

Learned post-processing methods are a special case of the sequential
methods discussed in Section 3.2.2, where the learned operator ap-
plied in the data domain, 𝑪 𝜃 , is replaced with an identity operator.
This makes the networks easier to train as the training is performed
in the image domain without the need to invoke the measurement
operator, speeding up the training process. Our method only post-
processes an initial reconstruction and is in this sense similar to a
denoiser. The solution can be written as:

𝒙★ = 𝚽†
𝜃
𝒚 = 𝚲𝜃𝚽

†𝒚, (31)

with 𝚲𝜃 the learned network, and 𝚽† the pseudo-inverse of the
measurement operator. Figure 5 shows a schematic representation of
this approach.
The architecture of our network is based on the U-Net (Ron-

neberger et al. 2015) network architecture, which was originally
designed for biomedical image segmentation. U-Nets can also be
used for denoising problems by replacing the two segmentation spe-
cific output layers with a single output layer returning the denoised
image. In this form, U-Net is a convolutional autoencoder with skip
connections at each of the scales. Our network includes blocks of 2D
convolutions with batch normalization and ReLU activation func-
tions at each scale, followed by MaxPool layers to sub-sample on a
downward branch. In the decoder branch, the upsampling is achieved
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Table 2. The computational complexity of the different methods for modelling the measurement operator of the SPIDER instrument in terms of the number of
pixels 𝑁 , the number of measurements 𝑀 , the number of projection angles 𝑃, and the support of the gridding kernels in pixels 𝐽 .

Fourier Transform Gridding Radon Transform Total

NUDFT O(𝑁𝑀 ) - - O(𝑁𝑀 )
NUFFT O(𝑁 log 𝑁 ) O (𝑀𝐽 2) - O(𝑁 log 𝑁 + 𝑀𝐽 2)
NU-Radon O(

√
𝑁 log

√
𝑁 ) O (𝑀𝐽 ) O (𝑁𝑃) O (

√
𝑁 log

√
𝑁 + 𝑀𝐽 + 𝑁𝑃)

NUDFT NUFFT (MSE: 1.487e-08) NU-RADON (MSE: 8.642e-04)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 3. Generating a dirty reconstruction by applying the adjoint of the measurement operator, using the NUDFT, to interferometric measurements of the
SPIDER instrument (left), compared to accelerated methods for approximation of the adjoint operation using the NUFFT (centre) and the NU-Radon (right)
approaches as detailed in sections 4.1 and 4.3 respectively. The MSE of the two accelerated approaches compared to the NUDFT is shown, where the error is
only calculated inside the circular aperture that limits the NU-Radon method.

True NUFFT Adjoint NUFFT Pseudoinverse NU-Radon Pseudoinverse

Figure 4. Measurements are simulated from the original image from the COCO dataset of natural images shown in the left-most image, using a NUFFT with the
SPIDER sampling pattern. Generating images by applying adjoint NUFFT operation, the pseudo-inverse NUFFT operation, and the pseudo-inverse NU-Radon
operation are shown respectively from left to right.

by transposed convolution layers. A schematic representation of the
architecture can be found in Figure 7.

Our learned post-processing is computationally efficient as it only
evaluates the measurement operator once per image for both evalu-
ation and training. However, this also limits the extent to which the
network can utilize the measurement model.

5.2 Learned iterative method (GU-Net)

An alternative approach is to apply learned iterative methods that
evaluate the measurement operator several times to improve the re-
construction quality by including measurement information at sev-
eral stages of the reconstruction process. While some methods in
this category closely mimic optimization methods, the method we
propose takes inspiration from multiscale methods. Our approach,
the Gradient U-Net (GU-Net), expands on the U-Net architecture by
calculating the gradient of the data fidelity after every downsampling
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Neural NetworkMeasurements

U-Net

Dirty Image Reconstruction
Telescope

Model 

Figure 5. The learned post-processing approach takes the interferometric
measurements and uses the telescopemodel to create an initial reconstruction,
in our case the dirty image. This is then passed through the learned post-
processing network to create the final reconstruction.

Measurements

Neural
Network

GU-Net

Dirty Image

Reconstruction

Neural NetworkTelescope
Model 

Telescope
Model 

Figure 6. For the learned iterative approach, the interferometric measure-
ments are used to create an initial reconstruction using the telescope model,
in our case this results in the dirty image. This is then used as input for
the learned iterative network. At several stages of the network, the telescope
model is used together with the original measurements to provide model-
based updates to the reconstruction.

and after every upsampling operation, as well as after the input layer,
to incorporate measurement information at every scale of the net-
work. Figure 6 shows a diagram summarising the learned iterative
reconstruction process. How we implement the network is described
below and a schematic representation of the network can be found in
Figure 7.
In order to add this measurement information at different scales

of the network we use sub-scale operators, 𝚽𝑖 : R𝑁𝑖 → C𝑀𝑖 (see
Section 4.2), where the size of the image space 𝑁𝑖 decreases by
powers of four (the images are halved in each direction; 𝑁𝑖 = 𝑁/4𝑖),
and the size of the measurement space 𝑀𝑖 is determined by applying
a low-pass filter that restricts the measurements to {(𝑢, 𝑣) : 𝑢 ≤
𝑢max/2𝑖 ∧ 𝑣 ≤ 𝑣max/2𝑖}, where 𝑢max and 𝑣max are the longest
baselines observed in each direction.
The first method to incorporate the measurement operator into the

reconstruction process is to calculate the gradient of the data fidelity
at each scale of the network: L(𝚽𝑖𝒙𝑖 , 𝒚𝑖) = 1

2 ‖𝚽𝑖𝒙𝑖 − 𝒚𝑖 ‖2ℓ2 . This
is given by

∇𝒙𝑖L(𝚽𝑖𝒙𝑖 , 𝒚𝑖) ∝ 𝚽∗
𝑖 (𝚽𝑖𝒙𝑖 − 𝒚𝑖), (32)

where 𝑥𝑖 ∈ R𝑁𝑖 is the first channel of the current iterate at scale 𝑖
of the network and 𝑦𝑖 ∈ C𝑀𝑖 is the low-pass filtered measurement
vector of visibilities.
By analogy to the Radon transform, the gradient does not contain

the high frequency features which are reinstated via the ramp filter
in the filtered back-projection. Therefore, we also include the filtered

gradient where the high-frequency features are boosted using a sam-
pling density based filter. This is analogous to taking the gradient
of a weighted least-squares norm with the measurement weights the
same as the uniform weights described in Section 4.1:

∇ 𝑓
𝒙𝑖L(𝚽𝑖𝒙𝑖 , 𝒚𝑖) ∝ 𝚽∗

𝑖 (𝑾
Uniform
𝑖 (𝚽𝑖𝒙𝑖 − 𝒚𝑖)), (33)

where 𝑾Uniform
𝑖

∈ R𝑀𝑖×𝑀𝑖 is a diagonal matrix with the measure-
ment weights for the sub-selected measurements as the diagonal
elements.
In addition to the gradient information, we also add the scale-

restricted dirty reconstruction (adjoint of the measurement operator
applied to the noisy measurements):

𝒙𝑖,dirty = 𝚽∗
𝑖 𝒚𝒊 . (34)

In doing so, the network can learn an update between the dirty
reconstruction, the current iterate passed down by the network, and
the gradient and filtered gradient information based on the current
iterate.
The measurement information encoded in the (sub-scale) gradient

and filtered gradient, and the dirty reconstruction is added at each
scale of the U-Net architecture after downsampling and after up-
sampling. The added measurement information at each scale of the
network is given by

�̃�𝑖 = 𝚲𝑖, 𝜃

(
𝒙𝑖 , ∇𝒙𝒊L(𝚽𝑖𝒙𝑖 , 𝒚𝑖),∇

𝑓
𝒙𝒊L(𝚽𝑖𝒙𝑖 , 𝒚𝑖),𝚽∗

𝑖 𝒚𝒊

)
, (35)

where 𝚲𝑖, 𝜃 is the learned convolutional operator to combine the
measurement operator information. At each scale of the network, the
gradient information is calculated for the first channel of the current
iterate. The learned convolutional operator takes the three channels
(gradient, filtered gradient, and dirty reconstruction) representing
the measurement information and convolves it with a number of
filters matching the number of channels of the current iterate in the
network, so as not to dilute the measurement operator information
when combining it with the original channels.
Evaluating the added measurement information in Equation 35

results in two evaluations of the measurement operator (one each for
the gradient and filtered gradient) and three evaluations of the adjoint
operator (one each for the gradient and filtered gradient and one
for the scale-restricted dirty reconstruction). Since the measurement
information is added after down- and upsampling, this results in four
full-scale evaluations of the forward and six full-scale evaluations of
the adjoint of the measurement operator for the added measurement
information. An additional evaluation of a single full-scale pseudo-
inverse of the measurement operator is also required for the initial
reconstruction.
This method is computationally more expensive than the U-Net

post-processing method because the measurement operator has to be
evaluated several times. However, as most of the evaluations of the
measurement operator are at reduced scales, the impact on recon-
struction time is kept to a minimum. Furthermore, inclusion of mul-
tiple iterations with the (albeit downsampled) measurement operator
enhances the impact of the model on the reconstruction, improving
robustness and generalizability of the model. Similar approaches that
leverage multiscale evaluation of the forward/adjoint operators to re-
duce computational cost with application in X-ray CT imaging were
proposed in Hauptmann et al. (2020) and Trent (2020).

6 EXPERIMENTS AND RESULTS

In order to evaluate the reconstruction performance and computa-
tional cost of the learned imaging methods proposed we perform
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Figure 7. Left: The neural network architecture for the U-Net model used for learned post-processing of the initial reconstruction estimated by the pseudo-inverse
of the measurement operator applied to the noisy measurements. Right: The neural network architecture for the GU-Net model for the learned iterative approach
used to reconstruct an image from interferometric measurements. The input image of the network is the pseudo-inverse of the measurement operator applied to
the noisy measurements. The model-based operation in this network takes the first channel on each of the scales and calculates the gradient (Equation 32) and
filtered gradient (Equation 33) of the data fidelity, as well as a scale-restricted dirty image (Equation 34). These are combined using a CNN layer (Equation 35),
concatenated to the original channels, and passed on through the rest of the network.

reconstructions on simulated measurements and compare the recon-
structions the ground truths. To assess reconstruction quality we
compute the peak signal-to-noise ratio (PSNR) to measure how
well the reconstruction matches the measurements and the struc-
tural similarity index measure (SSIM; Wang et al. 2004) to assess
the structural similarity of the reconstructions. We compare the two
learned approaches described in Section 5 to using a reconstruc-
tion obtained with the pseudo-inverse (Equation 21) and a primal-
dual method as described in Section 3.1.2 (the implementation uses
OptimusPrimal6 and runs for 300 iterations), which produces re-
sults on par with the current state-of-the-art in astronomical interfer-
ometric reconstruction. Specifically, we discuss the different datasets
used, the measurement simulation process, network training, and re-
construction results. Besides assessing the computational cost and
the reconstruction quality of the different approaches, we also eval-
uate the robustness of the methods proposed to additional noise and
generalisability to other smaller datasets through transfer learning.
Implementations for themeasurement operators, the learned imag-

ing techniques and the routines used to simulate interferometric mea-
surements and train the neural networks can be found in our LeIA7
codebase.

6.1 Datasets

We consider three datasets with different characteristics to evaluate
the reconstruction performance of the imaging methods. The three
datasets cover different potential use cases of the SPIDER instrument,

6 https://github.com/astro-informatics/Optimus-Primal
7 https://github.com/astro-informatics/LeIA

including standard imaging, astronomical imaging and Earth obser-
vation. All images are converted to greyscale and cropped to a size
of 256 × 256. For each epoch of training the images are rotated and
flipped randomly, andmeasurements are simulated and contaminated
with randomGaussian noise as described in Section 6.2. Note that the
networks could also be trained at larger image sizes, however since
the SPIDER instrument only sparsely samples the Fourier domain
(SPIDER acquires at a sparsity of 4440

256×256 ≈ 7%), reconstructing at
a larger image size would be challenging.
Since these methods are fully convolutional networks they can be

adapted to reconstruct at larger image sizes, if the measurement op-
erator is adapted accordingly. Note however that the SPIDER instru-
ment only sparsely samples the Fourier domain (SPIDER acquires at
a sparsity of 4440

256×256 ≈ 7%), because of this sparsity reconstructing
at a larger image size will not necessarily yield reconstructions at
higher resolution.
The Common Objects in COntext (COCO; Lin et al. 2014) dataset

is a large and diverse set of natural images. We selected a subset
of 3000 images split into 2000 training and 1000 test images. This
dataset provides a large and diverse dataset of natural images for
training the networks. Instruments similar to SPIDER could in fu-
ture be considered as standard imaging devices for natural images.
Furthermore, large datasets of readily available natural images such
as this can be used for transfer learning, as considered subsequently.
This dataset is initially used to demonstrate the general reconstruc-
tion performance of the reconstruction methods when trained on a
large set of diverse images. All the images in this dataset have di-
mensions larger than our network input size, and during training, a
random region of 256 × 256 is cropped out of the images at every
epoch.
Next, we consider a small domain-specific dataset of 450 simulated
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galaxy images, split into 300 training and 150 test images. The galaxy
images are obtained from the IllustrisTNG simulations (Nelson et al.
2019b). The H-alpha column densities from the TNG50 simulation
of the IllustrisTNG project (Nelson et al. 2019a; Pillepich et al.
2019) are binned to a 256 × 256 grid to obtain images of simulated
galaxy structures. Pixels with no simulation data are inpainted using a
primal-dual method in an unconstrained setting using the ℓ1-norm of
a dictionary of wavelets containing the Dirac basis and the first eight
Daubechies wavelets (Db1-Db8) as the regularization functional. We
add a small amount of noise to the simulation data (ISNR = 30dB)
and use Bayesian inference to estimate the regularization parameter
for this inpainting problem from the simulation data as described
in Pereyra et al. (2015). These steps are followed merely to process
the IllustrisTNG particle simulations in order to provide a dataset of
ground-truth galaxy images suitable for our imaging experiments.
The final dataset we consider is another small domain-specific

dataset of 450 satellite Earth observations taken from the DeepGlobe
satellite challenge (Demir et al. 2018), split into 300 training and 150
test images.

6.2 Simulating measurements

For a SPIDER instrument with parameters as defined in Table 1,
we simulate measurements using the NUFFT operator (Section 4.1)
with upsampling factor 2 per dimension, resulting in upsampling to
512×512 images, and a 6×6 KB kernel, which in this configuration
results in 𝑦 ∈ C4440 measurements.
We contaminate the measurements with complex Gaussian noise,

<(𝒏),=(𝒏) ∈ N (0, 𝜎/
√
2) with 0 mean and standard deviation of

the real and imaginary components defined by an input signal-to-
noise ratio (ISNR) of 30dB

𝜎 =
‖𝚽𝒙‖ℓ2√

𝑀
· 10

−ISNR
20 . (36)

6.3 Training and transfer learning

We train the networks on pairs (𝒚𝑖 , 𝒙𝑖) of synthetic noisy SPIDER
Fourier measurements and images with the mean squared error
(MSE) cost

C(𝒚𝑖 , 𝒙𝑖) =
∑𝑁
𝑖=1 ‖𝚽

†
𝜃
𝒚𝑖 − 𝒙𝑖 ‖2

𝑁
, (37)

where 𝚽†
𝜃
: C𝑀 → R𝑁 is the learned pseudo-inverse operator (i.e.

the networks defined in Section 5), such that 𝚽†
𝜃
𝒚 gives the learned

reconstructions of the noisy measurements 𝒚.
The networks are trained using the ADAM optimizer (Kingma &

Ba 2014) with a learning rate of 0.001 and a batch size of 5. The
training data for each epoch is precomputed to save time. Networks
are trained for 200 epochs.

6.4 Computation time

The average evaluation time required to compute reconstructed im-
ages for the different methods is shown in Table 3 for images of the
COCO dataset. The evaluation times include the initial application of
the NUFFT pseudo-inverse. Training time is also included and does
not include the time of pre-computing the augmented training data.
As expected, the U-Net model is highly computationally efficient

due to the small number of operator evaluations. The GU-Net model
is moderately slower than the U-Net model, but not significantly

so, again as expected. We note that learned methods are trained
and evaluated on the GPU while the primal-dual method is run on
a CPU, precluding direct comparison of the reconstruction time.
Nevertheless, the evaluation times in Table 3 are roughly proportional
to the number of fine scale operator evaluations, which corroborates
that these evaluations dominate the computational cost, and so aGPU
implementation of the primal-dual algorithm would remain ∼ 600×
slower than our U-Net model and ∼ 55× slower than our GU-Net
model. The computational times required by our learned models to
recover images, in the order of 10s of milliseconds, is sufficiently low
that our proposed methods can indeed open up real-time imaging for
the SPIDER instrument.

6.5 Reconstruction quality

We first compare the pseudo-inverse, primal-dual, and two learned
reconstruction methods on the COCO dataset. The distribution of the
quantitative metrics (PSNR and SSIM) over the training and test sets
are depicted in Figure 8. The reconstructions for a subset of training
and test images from COCO dataset are illustrated in Figure 9.
Our U-Net model performs similarly to the primal-dual algorithm,

which represents the state-of-the-art variational regularization ap-
proach, with marginally lower PSNR but marginally greater SSIM.
However, recall that imaging with the U-Net model is orders of mag-
nitude faster than the primal-dual algorithm. Our GU-Net model out-
performs both the U-Net and primal-dual approaches in both PSNR
and SSIM, as expected since it makes greater use of knowledge of the
measurement operator, while introducing only a moderate increase
in computation time compared to the U-Net approach. All methods
outperform the pseudo-inverse, which is to be expected.
We note the near mirror symmetry of the plots between training

and test set, which indicates only small difference in distribution of
the metrics between the train and test sets (this is also the case for
the primal-dual method which is dataset agnostic since it does not
include any training). This suggests that the trainedmodels generalize
well to unseen data in the same domain.
From the examples in Figure 9 it is apparent that the pseudo-inverse

yields noisy reconstructions with aliasing artefacts, the primal-dual
algorithm provides an improvement but still yields reconstructions
with considerable artefacts, the U-Net model generates good recon-
structions that are sometimes over-smoothened, losing details, while
the GU-Net model does best at recovering details and suppressing
artefacts, resulting in the overall best reconstructions.

6.6 Robustness to noise

Next, we evaluate the robustness of our trainedmodels with respect to
increased levels of additive Gaussian noise in the input. All models
are trained with ISNR = 30dB, however we vary the ISNR from
30dB to 12.5dB in test images. The averages of PSNR and SSIM
over a set of COCO images are shown in Figure 10.
The plots in Figure 10 both show a relative plateau followed by a

transition to linear decay at around ISNR = 20dB indicating robust-
ness to a moderate increase in noise level, with a linear deprecation
for higher noise levels. The PSNR GU-Net curve remains above the
U-Net curve as noise increases, while the SSIM curves are essen-
tially on top of one another for higher noise levels. This suggests
that the advantage of the GU-Net in terms of SSIM is marginal for
higher noise levels, while we maintain some PSNR advantage even
for higher noise levels. Overall, Figure 10 suggest sufficient robust-
ness of the trained models with respect to varying input noise levels,
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Table 3. Number of full scale measurement operator calls, reconstruction time averaged over 1000 images of the COCO dataset and training time, for the
pseudo-inverse, our learned methods, and a variational regularization approach. The reconstruction times for our learned methods are sufficiently low to enable
real-time imaging for the SPIDER instrument.

Name Operator evaluations Average reconstruction time (ms) Training time (mins)

Pseudo-inverse (1 GPU) 1 5.50 -
U-Net (1 GPU) 1 10.7 ∼30
GU-Net (1 GPU) 11∗ 42.1 ∼100
Primal-Dual (300its, 1 CPU) 600 4.7 × 104 -

∗Refers to operator evaluation at the finest scale, which dominates the computational time of the GU-Net.
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Figure 8. Distribution of reconstruction quality (PSNR and SSIM) for the different reconstruction methods on both the train and the test sets from the COCO
dataset of natural images for measurements with an ISNR of 30dB. The reconstructions are made using the pseudo-inverse of the measurement operator, a
primal-dual optimization scheme representing the state-of-the-art, our learned post-processing approach (U-Net), and our learned unrolled iterative approach
(GU-Net). The dashed and dotted lines inside the distributions indicate the mean and quartiles of the distributions.

such that a moderate underestimation of the noise level will not result
in a significant loss of reconstruction quality.

6.7 Generalization to other datasets

Besides assessing the performance of the models on natural images,
where we have a reasonably large number of training instances, we
also consider other datasets where data availability is limited, as is
the case for the galaxy and satellite datasets described in Section 6.1.
We consider three approaches for training networks for the two

smaller, domain-specific datasets: (i) training on the small dataset
from scratch; (ii) reconstruction of test images using the network
trained on the COCO dataset without retraining; and (iii) transfer
learning via initializing with the COCO pretrained networks and
fine-tuning on images from the small dataset for 100 epochs.
As a first test, we compare these three approaches for the smaller,

domain-specific galaxy dataset. Figure 11 shows GU-Net reconstruc-
tions for a test galaxy image in these three scenarios. The network
trained on just the galaxy images produces artefacts in its recon-
struction, due to the small volume of training data, while the model
trained solely on images from the COCO dataset appears blurred,
as the galaxy images do not have sharp edges. The transfer learning
approach, which leverages both the COCO dataset and the smaller
dataset of galaxy images, recovers the image with the highest PSNR.
Therefore, we restrict further comparisons to the transfer leaning
scenario.

The distribution of the quantitative metrics over the training and
test sets of the galaxy dataset for the transfer learning scenario can be
seen in Figure 12. Example reconstructions can be seen in Figure 13.
From Figure 12 it is evident that the U-Net has been over-fitted to
the training data as its performance metrics on the test data are sub-
stantially worse. Nevertheless, the example reconstructions of both
learnedmodels in Figure13 are visually very similar.We suppose this
is due to the nature of the galaxy dataset for which neither PSNR nor
SSIM is a particularly well suited metric. Indeed, visually the galaxy
images reconstructed by the learned models are arguably slightly
more appealing that those recovered by the primal-dual algorithm,
while the quantitative metrics are similar or arguably marginally
favour the primal-dual case. The close match between the train and
test distributions for GU-Net indicates that incorporating the physical
model into the learned reconstruction yields models with superior
generalization performance to unseen data.

The same experiments are performed for the satellite image
dataset, with distributions of metrics shown in Figure 14 and exam-
ple reconstructions shown in Figure 15. Both our learned approaches
outperform the primal-dual approach, in terms of metrics and vi-
sual inspection (the primal-dual algorithm yields more grainy, noisy
reconstructions). Moreover, the GU-Net models exhibits a slight im-
provement over the U-Net model, particularly for images with clear
edges.

In summary, by adopting a transfer learning approach our learned
imaging methods achieve similar or superior reconstruction qual-
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Figure 9. Example reconstructed images for the pseudo-inverse, the primal-dual algorithm, our learned post-processing approach (U-Net), and our learned
unrolled iterative approach (GU-Net) on five images from the COCO test set. The first column shows the true image followed by the four different reconstructions
from noisy measurements with an ISNR of 30dB.

ity to a state-of-the-art variational regularization approach even for
datasets for which limited training data is available, in a fraction of
the computational time.

7 CONCLUSIONS

We have proposed two new learned approaches to reconstruct images
for the SPIDER instrument, which compared to the classical state-
of-the-art proximal optimization algorithms improve reconstruction
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Figure 10. Robustness of learned models (trained for ISNR = 30dB) to increased input noise level: mean PSNR (left), SSIM (right) averaged over a set of
100 images from the COCO test set as a function of ISNR in the noise model (as described in Section 6.2). Our learned models exhibit sufficient robustness to
variations in noise, such that a moderate underestimation of the noise level will not result in a significant loss of reconstruction quality.
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Figure 11. Comparison of the three different approaches for training a model for smaller, domain-specific datasets (as described in Section 6.3). From left to
right: the original image, a reconstruction from a network trained only on the small galaxy dataset, a reconstruction using a network trained only on natural
images from the COCO dataset, and reconstruction made with a network trained first on natural images and then fine-tuned using transfer learning to the galaxy
dataset. The transfer learning approach recovers images with the highest reconstruction quality and the least amount of artefacts.

quality, while dramatically reducing the computational time required
to recover images.

Our first learned method adopts a learned post-processing ap-
proach to clearly separate the physical measurement model from the
learned imaging via a U-Net model. A consequence of this configu-
ration is that the pseudo-inverse of the physical measurement model
need only be applied once, resulting in orders of magnitude reduction
in imaging time compared to the benchmark traditional optimization
algorithm. Reconstruction quality is similar to the benchmark tradi-
tional algorithm.

Our second learned method, the GU-Net, uses a similar archi-
tecture but enhanced with multiscale evaluations of the gradient of
the data fidelity term, interweaving the measurement model into the
U-Net architecture. While this results in a moderate increase in the
time required to recover images compared to the U-Net model, re-

construction quality is improved by making greater use of knowledge
of the physical measurement model.
Overall, our learned methods achieve similar or superior recon-

struction quality compared to traditional approaches, while realizing
a dramatic reduction in the time required to recover images, to the
extent that real-time imaging with the SPIDER instrument becomes
possible for the first time, opening up many new use-cases.
While our learned methods are trained using data with a spe-

cific noise level, their performance on measurements with increased
noise levels remains similar for a moderate increase in noise level.
Furthermore, in scenarios where only a limited volume of training
data is available, as common in domain-specific problems, the per-
formance of the models can be increased by transfer learning from
a domain with sufficient training data. While for actual observations
one should try to construct as representative training as possible, our
learned methods show that it is possible to achieve similar or supe-
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Figure 12. Distribution of quantitive imaging metrics (PSNR and SSIM) over the train and test sets of the galaxy dataset. The dashed and dotted lines indicate
the mean and quartiles of the distributions. The learned approaches are trained using images of the COCO dataset first, and are then adapted to the galaxy dataset
by transfer learning.

rior reconstruction quality to the traditional primal-dual approach in
settings where limited train data are available, and at a fraction of the
computational cost.
In addition, we have presented two approaches to modelling the

measurement process of the SPIDER instrument. One method is
based on the NUFFT, which is widely used in radio interferome-
try and is applicable to any arbitrary sampling distribution. We also
present a new modelling approach based on the Radon transform,
an NU-Radon method, that applies specifically when the sampling
distribution has radial spokes of measurements, as is the case for
SPIDER, and show similarities to works in the medical imaging do-
main. This latter approach is computationally more efficient when
the number of measurements is large and the calculation of the mea-
surement operator is dominated by the (de)gridding of measurements
or when the number of pixels is large for a modest number of spokes.
Both modelling methods and all imaging techniques have been im-
plemented in Python and are available for use in the LeIA8 code.
While the methods presented in this work can be used with any ar-

bitrary sampling distribution (when using the NUFFT), the sampling
distribution we have considered is fixed. For radio interferometric
imaging the sampling distribution typically varies for each observa-
tion as it depends on the location of the object in the sky as well
as the length of time of the observation. Looking to the future, in
order to extend the learned methods presented in this paper to radio
interferometry, the networks need to be trained in such as way as
to support varying sampling patterns. This is the focus of ongoing
research, for which preliminary results are encouraging. Variants of
the methods presented in this paper are therefore likely to be of use
not only for SPIDER imaging but for radio interferometric imaging
more generally.
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