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ABSTRACT

Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of
magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be
impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods
to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed
deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In
this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate
time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number
of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric
classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to
state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative
setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we
achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area
under curve of 0.87.
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1 INTRODUCTION 2010, SNPhotCC) in 2010 that focused on photometric classifica-
tion of Supernovae only; and more recently the Photometric LSST
Astronomical Time-Series Classification Challenge (HloZek et al.
2020, PLASTICC) in 2018, which included a variety of different
astronomical transient events among its classes.

The Legacy Survey of Space and Time (LSST) of the Vera C. Ru-
bin Observatory (Ivezi¢ et al. 2019) will set a new precedent in
astronomical surveys, expecting to produce an average of 10 mil-
lion transient event alerts per night. Machine learning methods are
thus essential in order to handle the shear volume of data that will
come from the LSST. Since limited resources are available for spec-
troscopic follow-up of observations, accurate photometric classifica-
tion of astronomical transient events will be increasingly critical for
subsequent scientific analyses.

Several challenges arise when observing photometrically;
SNPhotCC and PLAsTiCC tried to simulate such conditions in terms
of photometric sampling linked to the telescope cadence, as well as
the distribution of classes one expects to observe. When creating
such a simulated dataset, realistic distribution of classes is of great

There }S a Wld? range Pf science Fhat comes from analyses of importance as often the training data available to astronomers is not
astronomical transients, with one particular area of focus being the s
of the same distribution one would observe through a real survey.

analysis of Type la Supernova. Type la Supernovae have beenanim- ;¢ 4o que (o Malmquist Bias (Butkevich et al. 2005), which is
portant tool for cosmologists for many years, serving as a proxy for

distance measure in the Universe and shedding light on the expansion
rate of the Universe (Riess et al. 1998; Perlmutter et al. 1999). Observ-
ing Type Ia Supernova at ever increasing redshift helps to constrain
cosmological parameters and theories of dark energy. Thus, accurate
classification of Type Ia Supernova from the stream of alerts has
profound consequences.

Over the last decade a plethora of photometric classification algo-
rithms have been developed. Many of them stemming from the fruit-
ful Supernova Photometric Classification Challenge (Kessler et al.

caused by the inherent bias towards observing brighter and closer
objects when observing the night sky. As a consequence, training
datasets are skewed to have more objects that are closer in distance,
lower in redshift, and brighter in luminosity. In addition, the use-
fulness of observations of Type la Supernova has induced a bias
towards spectroscopic follow-up of these events, resulting in vastly
imbalanced training datasets that have a large number of Type la
Supernova samples compared to other objects. The resulting train-
ing sets are therefore typically imbalanced and non-representative of
the test sets that one might observe. These issues present a major
challenge when developing classifiers. Several methods have been
proposed to address the problems of non-representativity and class
* E-mail: tarek.allam.10@ucl.ac.uk imbalance.
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Early attempts that applied machine learning methods to the
SNPhotCC dataset can be found in Karpenka et al. (2013) using
neural networks, in Ishida & de Souza (2013) using kernel PCA
with nearest neighbours, as well as methods found in Lochner et al.
(2016) which compared a variety of techniques with impressive re-
sults on representative training data. Another successful approach
can be found in Boone (2019) which was able to specifically extend
the boosted-decision-tree (BDT) method in Lochner et al. (2016) by
achieving good performance even in the non-representative training
set domain. This work used BDTs coupled with data augmentation
using Gaussian processes to achieve a weighted logarithmic loss
(Malz et al. 2019) of 0.68 in the PLAsTiCC competition (Hlozek
et al. 2020) and 0.649 in a revised model following the close of the
competition. However, one drawback with many of these methods
is the reliance of the human-in-the-loop, where well crafted feature
engineering plays an important role in achieving excellent scores.
With few exceptions, such as the approaches of Lochner et al. (2016)
and Varughese et al. (2015) that used wavelet features, many tra-
ditional machine learning approaches for photometric classification
are model dependent, relying on prior domain specific information
about the light curves.

More recently, there have been attempts to apply deep learning to
minimise the laborious task of feature selection and in some cases
input raw time-series information only. Work by Brunel et al. (2019)
used an Inception-V3 (Szegedy et al. 2015) inspired convolutional
neural network (CNN) and earlier work by Charnock & Moss (2017)
used a long-short-term-memory (LSTM) recurrent neural network
(RNN) for Supernovae classification. Moller & de Boissiere (2020)
also achieve good results building upon the success of RNNs. Ex-
tending to the general transient case and utilising an alternative RNN
architecture, gated reticular units (GRUs), work by Muthukrishna
etal. (2019) with RAPIDS showcased the impressive results one could
achieve by using the latest methods borrowed from the domain of
sequence modelling and natural language processing (NLP). While
these deep learning methods have been shown to yield excellent re-
sults, both RNNs and CNNs have several limitations when it comes
to dealing with time-series data.

RNNs tend to struggle with maintaining context over large se-
quences and from the unstable gradients problem. When an input
sequence becomes long, the probability of maintaining the context
of one input to another decreases significantly with the distance from
that input (Madsen 2019). The shorter the paths between any set of
positions in the input and output sequence, the easier it is to learn long
range dependencies (Hochreiter et al. 2001). Note that the maximum
path length of an RNN is given by the length of the most direct path
between the first encoder input and the last decoder output (Grosse &
Ba2019). Another problem faced by the RNN family is the inherently
sequential structure, making parallelisable computation difficult as
each input point needs to be processed one after the other, resulting
in a computational cost of O(n), where n is the sequence length
(Vaswani et al. 2017).

CNNs overcome these problems, to some extent, with trivial par-
allelism across layers and, with the use of the dilated convolution,
distance relations can become an O(logn) operation, allowing for
processing of larger input sequences (Oord et al. 2016). However,
CNNss are known to be computationally expensive with a complexity
per layer given by O(w - n - d2), where w is the kernel window size
and d the representational dimensionality (Vaswani et al. 2017). For
contrast, RNNs have complexity per layer O (n - d2).

Self-attention mechanisms and the related transformer architec-
ture, proposed by the NLP community, have been introduced to
overcome the computational woes of CNNs and RNNs (Vaswani
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et al. 2017). Complexity per layer is given by O(n? - d), with a
maximum path length of O(1) and embarrassingly parallelisable op-
erations. The self-attention mechanism has revolutionised the field
of sequence modelling and is at the heart of the work presented
here. We develop a new transformer architecture for the classifica-
tion of general multi-variate time-series data, which uses a variant of
the self-attention mechanism, and that we apply to the photometric
classification of astronomical transients.

This manuscript is structured as follows. Section 2 reviews the
recent breakthroughs in the domain of sequence modelling and NLP
that have inspired this work, and a pedagogical overview of trans-
formers and the attention mechanism that overcome some of the chal-
lenges faced by RNNs and CNNs. Section 3 outlines the attention-
based architecture of the time-series transformer developed in this
work, with the goal of photometric classification of astronomical
transients in mind. Section 4 describes the implementation and per-
formance metrics used to evaluate models. Section 5 presents the
results obtained from applying the transformer architecture devel-
oped to PLASTICC data (The PLAsTiCC team et al. 2018). Finally,
in Section 6 a summary of the work carried out and the key results
is discussed.

2 ATTENTION IS ALL YOU NEED?

This section gives a pedagogical review of the attention mechanism,
and specifically self-attention, which is the foundational element of
our proposed architecture. We step through the original architecture
that uses self-attention at its core and inspired this work, the trans-
former (Vaswani et al. 2017), and how it is generally used in the
context of sequence modelling.

2.1 Attention Mechanisms

As humans, we tend to focus our attention when carrying out partic-
ular tasks or solving problems. The incorporation of this concept to
problems in NLP has proven extremely successful, and in particular
the development of the attention mechanism has been shown to have
amajor impact, not only in the world of sequence modelling, but also
in computer vision and other areas of deep learning.

The attention mechanism originates from research into neural ma-
chine translation, a sub-field of sequence modelling often referred to
as Seq2Seq modelling (Sutskever et al. 2014). Seq2Seq modelling
attempts to build models that take in a sentence represented as a
sequence of embeddings x = [xy,x,...,x] and tries to find a
mapping to the target sequence y = [y1,y2,. .., yL]l. Seq2Seq has
traditionally been done by way of two bi-directional RNNs that form
an encoder-decoder architecture, with the encoder taking the input
sequence x and transforming it into a fixed length context vector c,
and the decoder taking the context through transformations that lead
to the final output sequence y. The hope is that the context vector is a
sufficiently compressed representation of the entire input sequence.
However, trouble arises with use of RNNs due to the inherent Markov
modelling property of these sequential networks, where the state is
assumed to be only dependent on the previously observed state. As
a consequence RNNs need to maintain memory of each input in
the sequence, albeit a compressed representation, up to the desired
context length. Therefore, RNNs suffer greatly with computationally
maintaining memory for large sequences (Madsen 2019).

1 In the domain of NLP, the inputs are word embeddings that are transfor-
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Figure 1. A model using the attention mechanism, reading the sentence: The
FBI is chasing a criminal on the run. Blue represents the attention for the
input sequence up to the end word in red. The level of shading dipicts the
attention weighting for each word in the input sequence. Reproduced in full
from Cheng et al. (2016).

Attention mechanisms (Bahdanau et al. 2014) were introduced to
mitigate these issues and to allow for the full encoder state to be
accessible to the decoder via the context vector. This context vector
is built from hidden states & of the encoder and decoder as well as
an alignment score @;;, between the target ¢ and input i. This assigns
a score a;; to the pair (yy,x;), e.g. in neural machine translation,
the word at position i in the input and the word at position ¢ in the
output, according to how well they align in vector space. It is the set
of weights {a;;} that define how much of each input hidden state
should be considered for each output. The context vector ¢; is then
defined as the weighted sum of the input sequence hidden states h;,
and the alignment scores a;;. This can be expressed as

¢ = Z(xtihi. (1)
i

A common global attention mechanism used to compute the align-

ments is to compare the current target hidden state /; to each input

hidden state k;, as follows (e.g. Luong et al. 2015):
exp (score(hy, h;))

Seir exp (score(hy, hir))’

where score can be any similarity function. For computational con-

venience this is often chosen to be the dot product of the two hidden
state vectors, i.e.

score(hy, hi)=h:h] . 3)

a;; = align(hy, h;) = 2

See Weng (2018) for a summary table of several other popular atten-
tion mechanisms and corresponding alignment score functions.

2.2 Self-Attention

Self-attention is an attention mechanism that compares different po-
sitions of a single input sequence to itself in order to compute a
representation of that sequence. It can make use of any similarity
function, as long as the target sequence is the same as the input se-
quence. Prominent use of self-attention came from work in machine
reading tasks where the mechanism is able to learn correlations be-
tween current words in a sentence and the words that come before
(see Figure 1). This type of attention can thus be useful in determin-
ing the correlations of data at individual positions with data at other
positions in a single input sequence.

Drawing from database and information retrieval literature, a com-
mon analogy of query ¢, key k, and value v, is used when referring
to the hidden states of encoder and decoder subcomponents. The

mations of a word at a given position into a numerical vector representation
for that word such as the word2vec algorithm (Mikolov et al. 2013).
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Q =XW® ¢ REXdq

EWQ € R?*dq
WK ¢ gixdi K = XWX ¢ REXk
X % %

WV c ]Rdxd”
V =XWV" ¢ REXdv

Figure 2. Diagrammatic representation of the computation of the attention
matrix A. An input sequence of length L and embedding dimension d is
combined with learned weights to produce query, key and value matrices
Q, K and V respectively.

query, ¢, can been seen as the decoder’s hidden state, k;, and the
key k, can be seen as the encoder’s hidden state, h;. The similarity
between the query and key can then be used to access the encoder
value v. In the case of dot-product self-attention, learnable-weights
are attached to the input X € RLxd for sequence length L and em-
bedding dimension d for each of ¢, k and v, which can be visualised
in Figure 2. This results in a set of queries Q = XW< e RLXdq,
keys K = XWK e REXdk and values V = XWV € R4y that can
be calculated in parallel, where dg, dy, and d,, are the respective di-
mensions. A self-attention matrix A € RE¥4v can then be computed
by

Attention(Q, K, V) = A = softmax (QKT) v. )

2.3 The Rise of the Transformer

Seminal work by Vaswani et al. (2017) introduced an architecture
dubbed the transformer, which is constructed entirely around self-
attention. They showed that state-of-the-art performance in neural
machine translation can be achieved without the need for any CNN
or RNN components; as they put simply “attention is all you need”.
Such was the impact of this work that there has since been an ex-
plosion of transformer variants as researchers strive to develop more
efficient implementations and new applications (Tay et al. 2020). It
is the original architecture by Vaswani et al. (2017) that inspired the
architecture proposed in this article, and as such the remainder of
this section focuses on describing the inner workings of this model.

As can be seen in Figure 3, the transformer consists of two sections:
an encoder and a decoder. Within each encoder and decoder there
exists a transformer-block, which contains the multi-head attention
mechanism. In the context of neural machine translation, one could
think of this set up as the encoder encoding a sentence in English,
transforming the input into a certain representation, and the decoder
taking this representation and performing the translation to French.
To ensure the model only attends to words it has seen up to a certain
point when decoding, an additional casual mask is applied to the
input sentence. We focus our discussion on the transformer block
without this casual mask since it is this block that is most relevant
when we come to classification tasks later in this article. Notwith-
standing, there is scope for further study to investigate the usefulness
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of applying a casual mask to the input sequence for early light curve
classification.

2.3.1 Multi-Headed Scaled Dot Product Self-Attention

Whilst the main building block used by Vaswani et al. (2017) is indeed
the self-attention mechanism, they modified the typical dot-product
attention by introducing a scaled element. This resulted in a new
mechanism called the scaled dot-product attention which is similar
to Equation 4 but with the input to the softmax scaled down by a factor
of dj. The motivation for introducing a scaling factor is to control
possible vanishing gradients that may arise from large dot-products
between embeddings. The new formulation for this mechanism can

be expressed as
KT
) V. (5)

di

Attention(Q, K, V) = A = softmax (Q

This now scaled version of the self-attention module was extended
further to also have multiple heads &, which allows for the model
to be able to learn from many representation subspaces at different
positions simultaneously (Vaswani et al. 2017). Similar to normal
self-attention calculations show in Section 2.2, this can be pictorially
understood with Figure 4 and by concatenating the attentions for each
head:

MultiHead (Q, K, V) = A = Concat[A, . .., A,]W©, (6)
where A; = Attention (Q;,K;, V;). With each A; € REXv, the
result of a final linear transformation of all concatenated heads,
Concat[A;, ..., Ap] € REX1dv with learned output weights WO e
Rhdvxd, produces the multi-headed attention matrix A € RLxd,

2.3.2 Additional Transformer-Block Components

As can be seen Figure 3 inside the transformer-block, there is also
a pathway that skips the multi-head attention unit and feeds directly
into an Add & Norm layer. This skip-connection, often referred to
a residual connection, allows for a flow of information to bypass
potentially gradient-diminishing components. The information that
flows around the multi-head attention block is combined with the
output of the block and then normalised using layer normalisation
(Baet al. 2016) by

X « LayerNorm(MultiHeadSelfAttention(X)) + X. @)

A feed-forward network follows, comprised of two dense layers
with the first using ReL.U activation (Nair & Hinton 2010) and the
second without any activation function. A similar skip connection
occurs, but instead bypasses the feed-forward network, before being
combined again and layer-normalised. It should be noted that all op-
erations inside the transformer-block are time-distributed, which is
to say that each word or vector representational embedding, is ap-
plied independently at all positions. When combining these elements
together, this results in a single transformer-block:

X « LayerNorm(MultiHeadSelfAttention(X)) + X
X « LayerNorm(FeedForward(X)) + X, ®)

where X is the input embedding to the transformer-block.
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2.3.3 Input Embedding and Positional Encoding

The inputs to the transformer are word embeddings created from typ-
ical vector representation algorithms such as word2vec. Applying
this transformation projects each word token into a vector repre-
sentation on which computations are made. Additionally, recall that
attention is computed on sets of inputs, and thus the computation it-
self is permutation invariant. While this gives strengths to this model
in terms of parallelism, a drawback of this is the loss of temporal in-
formation that would usually be retained with RNNs. A consequence
of this is the need for positional encodings to be applied to the in-
put embeddings. In Vaswani et al. (2017) the positional encoding
P € RL%4 which is used to provide information about a specific
position in a sentence (Weng 2018), is computed by a combination
of sine and cosine evaluations at varying frequencies. Assume / to be

a particular position location in an input sequence, with/ =1, ..., L,
and embedding index k£ = 1, ..., d, then
_ Jsin(wg.l), if k even ©)
- cos(wg.l), otherwise
where !
W= ———.
7~ 100002/d

Provided the dimension of the word embedding is equal to the di-
mension of the positional encoding, the positional vector p; € R4
corresponding to a row of the matrix P is added to the corresponding
word embedding x; of the input sequence [xi, ...,X,] (Kazemnejad
2019):

X] < X & p;. (10)

For a visual representation of the position encoding see Figure 5,
which depicts the positional encoding for a 128-dimensional by 100
sequence length input embedding. Using positional encoding in this
way allows for the model to have access to a unique encoding for every
position in the input sequence. The motivation for using sine and
cosine functions are such that the model is also able to learn relative
position information since any offset, p;ofset Can be represented as
a linear function of p; (Vaswani et al. 2017).

3 THE TIME-SERIES TRANSFORMER: T2

In this section we present our transformer architecture for time se-
ries data, which is based on the self attention mechanism and the
transformer-block. Our work is motivated by photometric classifica-
tion of astronomical transients but generally applicable for classifica-
tion of general time-series. The time-series transformer architecture
that we propose supports the inclusion of additional features, while
also offering interpretability. Furthermore, we include layers to sup-
port the irregularly sampled multivariate time-series data typical of
astronomical transients.

3.1 Architecture

Our architecture, referred to from herein as t2, shown in Figure 6, has
several key differences compared to the original transformer shown in
Figure 3. The first of these differences is the removal of the decoder.
As the task at hand is classification, a single transformer-block is
sufficient (Tay et al. 2020). Another difference can be seen with the
additional two layers prior to positional encoding unit, which are
Gaussian Process Interpolation and Convolutional Embedding. In
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Figure 3. Layout of the original transformer architecture defined in Vaswani et al. (2017). The multi-head attention unit has been zoomed-in to reveal the inner
workings and key component of the scaled dot-product attention mechanism. Note the two grey boxes on the left and right of the architecture. These are both
transformer blocks, with N indicating how many times each block is stacked upon itself.
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Figure 4. Diagrammatic representation of the computation of the multi-head attention. Instead of computing attention once, the multi-head mechanism divides the
input with sequence length L and embedding dimension d by number of heads % to compute the scaled dot-product attention over each subspace simultaneously.
These independent attention matrices are then concatenated together and linearly transformed into an attention matrix A € RL*4_ The above diagrammatic
representation assumes the dimensionality of keys dj. is the same as the dimensionality of the values d,, .

conjunction with these two layers is a Concatenation layer that is 3.2 Irregularly Sampled Multivariate Time-series Data
able to add an arbitrary number of additional features to the network.
These layers process the astronomical input sequence data and pass
it to a typical transformer-block. The output of the transformer-block
is then passed through a new Global Average Pooling layer, before
finally being passed through a softmax function that provides output
probabilities over the classes considered.

With neural machine translation the input consisted of a sequence
of words that form a sentence. While this is similar for astronomical
transients in the sense that one has a sequence of observations that
form a light curve, there are several differences that are important to
address. It will be useful to review the kind of data one is dealing
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100. This can be understood as each row representing the encoding vector for
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Figure 6. Schematic of the time-series transformer (t2) architecture. Raw
time-series data is processed through the Gaussian process interpolation
layer, followed by a concatenation layer to include any additional features. A
convolutional embedding layer follows to transform the input into a vector
representation, with a positional encoding applied to the embedding vector.
This is passed as input into the transformer-block, where the multi-head at-
tention block is the same as that shown in Figure 3. The output of which is
then passed through a global average pooling layer and finally a linear layer
with softmax to output class prediction probabilities for the objects.

with and to make some definitions (adapted from Fawaz et al. 2019)
with regards to the task of astronomical transient classification. In
general, the data that one observes can be viewed as an irregular
multivariate time-series signal:

Definition 1. A univariate time-series signal X = [x1,x7,. ..
consists of an ordered set of T real values with x € R” .

X7 ]
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Definition 2. An M-dimensional multivariate time-series signal,
X = [x1,Xp,...,Xp7] consists of M univariate time series with
X e RT XM

Definition 3. An irregular time-series is a ordered sequence of
observation time and value pairs (¢, x,) where the space between
observation times is not constant.

Definition 4. A dataset D = {(X{,Y7), (X2,Y2),...,(Xn,YN)} s
a collection of pairs (Xj, Y;) where X; could either be a univariate
or multivariate time series with Y; as its corresponding one-hot label
vector. For a dataset containing C classes, the one-hot label vector Y;
is a vector of length C where each element is equal to 1 for the index
corresponding to the class of X; and 0 otherwise.

The goal for general time-series classification consists of training
a classifier on a dataset 9 in order to map from the space of possible
inputs to a probability distribution over the class variable labels. For
photometric classification of astronomical transients, the light that is
observed is collected through different filters, also known as pass-
bands, that allow frequencies of light within certain ranges to pass
through. Observations collected over a period of time for a partic-
ular celestial object form a light-curve. A light-curve is irregularly
sampled in time and across passbands which further complicates the
task.

3.2.1 Data Interpolation with Gaussian Processes

The raw time-series that is observed is irregularly sampled with het-
eroskedastic errors. A technique widely used to overcome missing
data, and that can also provide uncertainty information is Gaussian
process regression (Rasmussen 2004). This technique is a popular
method that has been applied to Supernovae light curves for many
years, e.g Lochner et al. (2016). Gaussian processes represent dis-
tributions over functions f that when evaluated at a given point x
is a random variable f(x), with mean E[f(x)] = m(x) and covari-
ance between two sampled observations x,x” as Cov(f(x,x")) =
Ky (x,x’), where K¢ (-, -) is a kernel.

An important aspect of applying Gaussian process interpolation to
data is the choice of kernel. It was discovered in Boone (2019) that
for general transients a 2-dimensional kernel that incorporates both
wavelength (i.e. passband) information as well as time works well. It
can be seen in Boone (2019) that by use of a 2-dimensional kernel,
correlations between passbands are leveraged and predictions in pass-
bands that do not have any observations are still possible. As such,
we use the Matern kernel (Rasmussen 2004) that is parametrised
by v which controls the smoothness of the resulting function and
set to v = 3/2. By performing Gaussian process regression and
then sampling the resulting Gaussian process at regular intervals,
we transform our previously irregular multivariate time-series to a
now well sampled regular multivariate signal. The Gaussian process
mean is sampled at regular points in time to produce X € RLXM
where L is the sampled time sequence length and M is the number of
passbands. This procedure is illustrated in Figure 7 (along with a final
convolutional embedding explained in the following Section 3.3).

3.3 Convolutional Embedding

With neural machine translation applications the inputs to the orig-
inal transformer architecture take in word embeddings that had
been derived from a typical vector representation algorithm such
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X € RLxd
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Figure 7. The three-stage process of transforming an astronomical transient light curve from raw photometric time-series data to a vector representation suitable
as input to the time-series transformer. First, Gaussian process regression is carried out to regularly sample the light curve. The Gaussian process mean is
evaluated at L time points / for each of M passbands, and projected to dimension d via a 1-dimensional convolutional embedding (Lin et al. 2013) at each
point [ such that final input sequence X € RE*4_ The resulting embedding matrix is then shown in blue, where for example a d-length vector for a single input

position highlighted in green.

as word2vec. In a similar manner, embeddings for the now interpo-
lated time-series data are required. We adopt a simple 1-dimensional
convolutional embedding, with kernel size of 1 and apply a ReLU
non-linearity. Inspired by Lin et al. (2013), a 1-dimensional con-
volution allows for a transformation from k-dimensional space to a
k’-dimensional space whilst operating over a single time window
of size of 1. For our purposes, using this convolution allows for di-
mensionality to be scaled from M to d dimensions without affecting
the spatio-temporal input. Therefore, this operation transforms the
original input of M-dimensional time-series data points, i.e. time-
series data points across M passbands, into a d-dimensional vector
representation ready for input into the transformer-block. This oper-
ation is akin to a time-distributed, position-wise feed-forward neural
network operating on each input position.

3.4 Global Average Pooling

We also introduce a layer that performs global average pooling (GAP)
on the output of the transformer-block. The motivation for adding a
GAP layer following the transformer-block was inspired by work in
Zhou et al. (2015). The GAP layer, originally proposed by Lin et al.
(2013), has become a staple in modern CNN architectures due to
its usefulness in interpretable machine learning. In previous works
on 2-dimensional images, GAP layers are used as a replacement
to common fully connected layers to avoid overfitting since there
are no parameters to optimise. Another useful advantage over the
fully connected layer is the averaging in a GAP layer averages out the
spatial information leaving it more robust to translations of the inputs
(Lin et al. 2013). Similar to 2-dimensional inputs, using a GAP layer
on the 1-dimensional time-series, proves robustness to translations
in the input.

By adapting the description found in Zhou et al. (2015), one can
apply a GAP layer to a time-series. Let fi (/) represent the activation
of a particular embedded dimension k at a location /, where k =
1,...,dand [/ = 1,...,L. Then a GAP layer can be computed by
taking the average over time for each feature map Fy = 3; fx (1).

3.5 Class Activation Maps (CAM)

A nice feature of using a GAP layer is that one can determine the in-
fluence of fi (/) on predictions for a given class ¢ € C by considering
the associated score S that is passed into the softmax layer (Zhou
etal. 2015). This is calculated from the final fully connected weights
w¢ and the feature maps Fy as S¢ = X wi - Fx = X7 X wi - fi (D).

The class activation map (CAM) for a given class c is then given
by

Mc(D) = ) w fic(D). (1
k

Since S¢ = >y M (1), it is possible to use M. (I) to directly gauge
the importance of the activation at input location / in leading to the
classification of class c.

3.6 Imputing Additional Information

The time-series transform, t2, is designed to be malleable such that
one can add further features if desired. For the purposes of the current
study of photometric classification, only redshift information has
been added. In many photometric classifiers, photometric redshift z,
has consistently been a feature of high importance (e.g. Boone 2019).
As one particular example of the type of additional features that can
be added, photometric redshift z and the associated error zerror are
included.

Additional features could in principle be incorporated in the time-
series transformer in a variety of different manners. To leverage the
power of neural networks to model complex non-linear mappings,
such additional features should feed through non-linear components
of the architecture. On the other hand, recall from Section 3.5 that
in order to compute a CAM (class activation map), the output of the
GAP layer must pass directly into the linear softmax layer. Hence,
incorporating additional features at this stage of the architecture will
not be effective unless a non-linear activation is introduced, which
would destroy the interpretability of the model.

To preserve our ability to compute CAMs, there are several other
possible locations in the architecture where one could consider in-
cluding additional features. The most natural point is immediately
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prior to the convolutional embedding layer (see Figure 6). Adding fea-
tures at this location allows for all information to be passed through-
out the entire network. Nevertheless, there are alternative ways in
which additional features can be incorporated at this point.

The most obvious way to incorporate additional features is to
essentially consider them as a additional channels and concatenate
in the dimension of the M passbands to redefine the input as X €
RLXM _y X ¢ REXM’ where M’ = M + R, and R is the number of
features to add. This essentially broadcasts the additional information
to each input position in /.

The alternative is to concatenate in the dimension of the L time
sequence samples, which transforms the input as X € RE*XM
X € REXM | \where L’ = L + R. There are several advantages for
choosing the approach of concatenating to L rather than M. Firstly,
this approach allows one to pay attention to the additional features
explicitly. Secondly, it gives activation weights for the additional
features, which in our case is redshift and redshift error, so the impact
of the additional features can be interpreted. So, while in principle
one could consider concatenating to either L or M, we advocate
concatenating to L.

3.7 Trainable Parameters and Hyperparameters

The time-series transformer, t2, model contains a set of trainable
parameters that stem from the weights contained in the transformer-
block as well as learned weights at the embedding layer and final
fully connected layer. The first layer with trainable parameters is
the convolutional embedding layer. The numbers of parameters for a
general convolutional layer is given by

[Mxwxd]+d,

where M denotes the number of input channels or passbands, w
refers to the kernel window size, which in this case is 1, and d is the
dimensionality of the embedding. Continuing through the model, the
number of trainable parameters for the multi-head attention unit has
4 linear connections, including Q, K, V and one after the concatena-
tion layer, i.e. WQ, wk R WV and WO. Recall that for multi-head
attention we set hd, = d (see Figure 4), hence the number of pa-
rameters for W2, WK, WY and WO across all of the & heads is
identical. The number of layer normalisation parameters is simply
the sum of weights and biases together with the feed forward neural
network weights of the input multiplied by the weights of the output
plus the output biases (Chai 2020). Combining all units inside the
transformer block together yield

Nx(4x[(dxd)+d])+(2%x2d)+(d x dg+dg) + (dg X d + d)
— —
Multi-Head Attention ~ Layer Norm

Feed Forward

where N refers to how many times one stacks the transformer-block
upon itself, and dg refers to the number of neurons in the feed forward
network inside the transformer-block. Since there are no trainable
parameters with the GAP layer, the final fully connected linear layer
with softmax results in a remaining number of trainable parameters
of

([dxCl1+C),

where C refers to the number of classes.

Of the parameters discussed above, there are some that are fixed
due to the problem at hand, such as M number of passbands and
C classes to classify. But there are also other parameters that are
not necessarily trainable that are considered hyperparameters. These
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include: the dimensionality of the input embedding d, the dimension-
ality of the feed forward network inside the transformer-block dy,
the number of heads to use in conjunction with the multi-head atten-
tion unit £, the percentage of neurons to drop when in training using
the dropout method (Srivastava et al. 2014) droprate, the num-
ber of transformer-blocks N, and the learning rate learning_rate
(discussed further in Section 4.4).

4 IMPLEMENTATION, EVALUATION METRICS &
TRAINING

We leverage modern machine learning frameworks to develop the
time-series transformer implementation, t2, in a modular manner
for ease of use and future extension. We present the key evaluation
metrics that we use to measure the performance of the classifier
and the motivation for particular types of metrics in relation to the
photometric astronomical transient classification problem that we
consider in Section 5. We also discuss the loss function used for
training and how hyperparameters are optimised.

4.1 Implementation

We use the machine learning framework of TensorFlow (Abadi
et al. 2015) with the tf.keras API for the implementation of our
t2 architecture. Our code is available under Apache 2.0 licence
and open-sourced?. Key data processing software of pandas (Wes
McKinney 2010) and numpy (Harris et al. 2020) has been used
heavily for manipulation of input data, with george (Ambikasaran
et al. 2015) used for fitting the Gaussian processes. Training and
inference of our model has been carried out on a NVIDIA Tesla
V100 GPU.

4.2 Performance Metrics

Choice of evaluation metrics is of high importance when considering
the performance of a classifier. This is compounded when dealing
with imbalanced datasets since most metrics consider the setting of an
even distribution of samples among the classes. One must be careful
when considering which metrics to evaluate a model’s performance
since relatively robust procedures can be unreliable and misleading
when dealing with imbalanced data (Branco et al. 2015; Malz et al.
2019).

Typically, threshold metrics are used which consider the rate or
fraction of correct or incorrect predictions. Threshold metrics are
formulated by combinations of the four possible outcomes a classifier
could have with regards to predicting the correct class:

o True Positive (TP): prediction of a given class and indeed it being
that class.

e False Positive (FP): prediction of a given class but it does not
belong to that class.

e True Negative (TN): prediction that an object is not a particular
class and it is indeed not that class.

o False Negative (FN): prediction that an object is not a particular
class but it is in fact that class.

From these outcomes common threshold metrics can be formulated,
with perhaps the most common threshold metric being accuracy,

2 github.com/tallamjr/astronet
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which is the number of correctly classified samples over the to-
tal number of predictions. However, for imbalanced data results on
accuracy alone can be misleading as a model can achieve high ac-
curacy by simply classifying the majority class. More robust metrics
for imbalanced data are precision and recall since their focus is on a
particular class:

TP TP
, Recall = ——.
TP + FP TP + FN

Precision gives the fraction of samples predicted as a particular class
that indeed belong to the particular class. While recall, also known
as the true positive rate, indicates how well a particular class was
predicted.

Precision =

12)

4.2.1 Confusion Matrix

One way to visually inspect the performance of a classifier with
regards to threshold metrics is by the confusion matrix. The confusion
matrix provides more insight into the performance of the model and
reveals which classes are being predicted correctly or incorrectly.
Often these tables are normalised across the rows to give probabilities
in order to provide a more intuitive understanding. A perfect classifier
across all classes would therefore be equivalent to the identity matrix
with all ones along the diagonal and zero elsewhere.

4.2.2 Receiver Operating Characteristic

An important point to note is that threshold metrics alone assume the
class imbalance present in the training set is of the same distribution
as that of the test set (He & Ma 2013). On the other hand, a set of
metrics built from the same fundamental components as threshold
metrics, called rank metrics, do not make any assumptions about class
distributions and therefore are a useful tool for evaluating classifiers
based on how effective they are at distinguishing between classes
(Brownlee 2020).

Rank metrics require that a classifier predicts a probability of
belonging to a certain class. From this, different thresholds can be
applied to test the effectiveness of classifiers. Those models that
maintain a strong probability of being a certain class across a range
of thresholds will have good class separation and thus will be ranked
higher.

The most common of this type of metric is the receiver-operating-
characteristic (ROC) curve, which plots the true positive rate verses
the false positive rate to estimate the behaviour of the model under
different thresholds. The ROC curve is then used as a diagnostic
tool to evaluate the model’s performance, with every point on graph
representing a given threshold. Interpolating between these points
forms a curve, with the area under the curve (AUC) quantifying
performance. A classifier is effectively random if the AUC is 0.5
and, conversely, is a perfect classifier if the AUC is equal to 1.0.

4.2.3 Precision-Recall Trade-Off

An alternative diagnostic plot to the ROC curve is the precision-
recall (PR) trade-off curve. This is used in a similar way to the ROC
curve but instead focuses on the performance of the classifier to the
minority class, and hence is more useful for imbalanced classification
problems (Brownlee 2020). Much like the ROC curve, points on
the curve represent different classification thresholds with a random
classifier resulting in an AUC equal to 0.5 and a perfect classifier
resulting in an AUC of 1.0.
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4.3 Multi-Class Logarithmic-Loss

The underlying algorithm that governs the usefulness of neural net-
works is the stochastic gradient decent (SGD) optimisation algorithm
that updates the weights of the network according to the backpropa-
gation algorithm (Rumelhart et al. 1986). While performance metrics
give an indicator as to how well a model is able to distinguish between
classes, to be able to train and improve the model one must have a
differentiable loss function. Extensive investigations by Malz et al.
(2019) showed that the most suitable differentiable loss-function for
the problem of transients classification is a probabilistic loss function.
Probabilistic loss functions are used in cases where the uncertainty
of a prediction is useful and the problem at hand is best served
with quantification of the errors rather than a binary answer of cor-
rect or incorrect. The probabilistic loss function they suggest is the
multi-class weighted logarithmic-loss that up-weights rarer classes
and defines a perfect classifier as one that achieves a score of zero,
and is given by

C N; Yij .
Zi:] Wi Zj=l WZ lnPu
L£=- Z , (13)
Zi:l Wi

where C refers to the number of classes in the dataset and N; the
number of objects in the i-th class. The predicted probability of an
observation i belonging to class j is given by p;;. For our inves-
tigation we opt for a flat-weighted multi-class logarithmic-loss as
described in Boone (2019) that assigns all classes in the training
set the same weight of w; = 1. To consider the original metric put
forth in Malz et al. (2019) and use the weighting scheme designed
for the PLASTiCC competition, one would also need to include the
additional anomaly classes (class 99) that existed in the PLASTiCC
test set. By ignoring class 99 one can better compare later analyses
between the original PLASTiCC training set and our modified dataset
(described in upcoming Section 5.1).

4.4 Training

In order to train a model with the t2 architecture, we need to establish
the choice of optimisation algorithm and associated parameters that
will be used to update the weights of the network. We use a variant
of the SGD optimisation algorithm mentioned in Section 4.3 called
ADAM (Kingma & Ba 2014). An important aspect to consider when
training a model using any optimisation algorithm is the learning
schedule and corresponding learning rate. The initialisation value of
the learning rate can be seen as a hyperparameter to be optimised for
separately with hyperparameter optimisation (discussed in the next
section). It is typically beneficial to introduce a learning schedule
to reduce the learning rate as training progresses (Goodfellow et al.
2016). We indeed adopt a learning schedule, reducing the learning
rate by 10% if it is observed that our loss value does not decrease
within 5 epochs. To ensure the model does not overfit, we monitor
the ratio of validation loss with the training set loss.

4.5 Hyperparameter Optimisation

As discussed in Section 3.7, t2 contains a set of fixed parameters
such as M and C, and a set of tunable hyperparameters. Choosing
the best set of hyperparameters can be framed as an optimisation
problem expressed as

0" = argmin g (), (14)
6€O
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where g(6) is an objective score to be minimised and evaluated on
a validation set, with the set of hyperparameters 6 being able to take
any value defined in the domain of ®. The objective score for our
purposes is the logarithmic-loss defined in Equation 13 and the set
of hyperparameters that yield the lowest objective score is 8*. The
goal is to find the model hyperparameters that yield the best score on
the validation set metric (Koehrsen 2018).

Traditionally hyperparameter optimisation has been performed
with either random search or a grid search over the set of param-
eters in ©, which can be time consuming and inefficient. Instead a
Bayesian optimisation approach is used that attempts to form a proba-
bilistic model mapping hyperparameters to a probability distribution
for a given score.

To choose the best performing hyperparameters we use the Tree-
structured Parzen Estimator (TPE) algorithm (Bergstra et al. 2011)
that is implemented in the optuna package (Akiba et al. 2019) with
5 fold cross-validation.

5 RESULTS

We apply our time-series transformer architecture to the problem
of photometric classification of astronomical transients. As noted in
Section 1 typical astronomical data that are available for training
a photometric classifier are highly imbalanced, with a large num-
ber of spectroscopically confirmed Supernova Type Ia compared to
other classes, and non-representative, since observations are biased
towards lower redshift objects. Consequently, the training data are
non-representative of the test data. For robust and accurate classifica-
tion, training datasets should be representative of the test data. Works
by Boone (2019) and Revsbech et al. (2018) present techniques that
help address this problem of non-representativity, transforming the
training data to be more representative of the true test data through
data augmentation. This process is involved and can be decoupled
from the design of architecture of the classifier. Therefore in this
current article, as a first step we consider training data that is repre-
sentative in redshift but imbalanced. In future work we will consider
the combination of t2 with augmentation techniques to address the
representativity problem.

5.1 Astronomical Transients Dataset

To be able to evaluate our architecture in a representative setting, but
also to test the models resilience to class imbalance, we utilise the
PLASTiCC dataset (The PLASTICC team et al. 2018). The complete
dataset contains synthetic light curves of approximately 3.5 million
transient objects from a variety of classes simulated to be observed
in 6 passbands using a cadence defined in Kessler et al. (2019).

The majority of events that exist in the dataset were simulated to be
observed with the Wide-Fast-Deep (WFD) mode, which compared
to the Deep-Drilling-Fields (DDF) observing mode, is more sparsely
sampled in time and has larger errors. Originally crafted for a machine
learning competition’, the entire PLAsTICC dataset was divided
into two parts, with < 1% initially being given to participants in
the competition that was highly non-representative of the other part.
Following the close of the competition all data are now publicly
available*. For our purposes, we use the complement to what was
initially released and construct a new training and test set from the
remaining 99% of the data (without anomaly class 99). By doing so,

3 kaggle.com/c/PLASTICC-2018
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Table 1. Number of samples of the PLAsTiCC data used for evaluation of the
t2 model. Note the largely imbalanced dataset distribution of SNIa objects
compared to other classes.

Class Number of Samples (%)
1 — Lens-Single 1,303 (0.037%)
TDE 13,552 (0.389%)
EB 96,560 (2.775%)
SNII 1,000,033 (28.741%)
SNIax 63,660 (1.830%)
Mira 1,453 (0.042%)
SNIbc 175,083 (5.032%)
KN 132 (0.004%)
M-dwarf 93,480 (2.686%)
SNIa-91bg 40,192 (1.155%)
AGN 101,412 (2.915%)
SNIa 1,659,684 (47.700%)
RRL 197,131 (5.666%)
SLSN-I 35,780 (1.028%)
Total 3,479,456 (100%)

Table 2. The time-series transformer, t2, contains 6 hyperparameters to be
optimised. The set of parameters and learning rate that scored the lowest
objective score using 5-fold cross-validation and the TPE Bayesian optimisa-
tion method is shown here. To be concise we only show learning_rate to
3 decimal places and advise the reader to refer to the code for full details.

Parameter Value
d 32
h 16
dg 128
N 1
droprate 0.1

learning_rate 0.017

the dataset is now representative in terms of redshift, but remains
highly imbalanced in terms of the classes. The number of samples
per class used to evaluate our architecture can be found in Table 1.

5.2 Classification Performance

Of the model parameters in the time-series transformer, t2, there are
a subset of hyperparameters that are tunable and can be optimised
for (see Section 4.5). Through application of the TPE Bayesian op-
timisation method on a validation set constructed from 10% of the
training set, using 5-fold cross-validation we obtained the parameters
which gave the lowest objective score. The results of which can be
found in Table 2.

When we build our time-series transformer with the hyperparam-
eters shown in Table 2, and train a model using the training data
set described in 5.1 we are able to achieve a logarithmic-loss of
0.507. The confusion matrix depicted in Figure 8 shows good per-
formance across all classes. Both receiver operating characteristic
(ROC) and precision-recall (PR) plots, Figure 9 and Figure 10 re-
spectively, show reasonable multi-class classification accuracy, with
the exception being towards the Kilonovae and SNIax classes. We
suspect this is purely down to the scarcity of sample for Kilonovae and
light curve similarity to SNIa in the case of SNIax as mentioned in 5.
The performance of our model expectedly degrades when auxiliary
information of redshift and redshift error is not included. However,

4 zenodo.org/record/2539456#.YIiVASNKjlz
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we find it promising that our model with raw time-series information
only can still achieve a logarithmic-loss of 0.873.

It is expected that if a full hyperparameter search can be performed
on the full training set by leveraging greater computational resources,
it is likely better parameters could be discovered leading to improved
performance. While a direct comparison with other methods pre-
sented in HloZek et al. (2020) cannot be made since they have been
trained with non-representative datasets, the time-series transformer
is able to achieve excellent classification performance with mini-
mal feature selection and few trainable parameters by deep learning
standards.

It is often the case with machine learning models that, as remarked
upon in Hlozek et al. (2020) and Lochner et al. (2016), in order to
overcome a classification bias towards particular classes, an equal
distribution of samples among the classes is often necessary for ac-
curate classification. However, the t2 architecture is able to handle
class imbalance very well, and as such our model did not require any
data augmentation in order to achieve a good score, unlike other meth-
ods. It is uncertain at this time whether this is an inherent property of
transformers or the attention mechanism, or perhaps the architecture
is simply able to find sufficient discriminative features with far fewer
training samples than was previously thought is required for deep
learning approaches such as CNNs and RNNs. As discussed already,
we are yet to consider the case of data that is not representative in
redshift, where augmentation techniques will certainly be necessary,
which will be the focus of future work.

5.3 Interpretable Machine Learning

Work by Zhou et al. (2015) lead the way forward with major improve-
ments for model interpretability. Their use of the GAP (global aver-
age pooling) layer for the localisation of feature importance helped
researchers discover methods of visually inspecting a classifier’s per-
formance. In a similar regard, a GAP layer is included in the t2
architecture to allow for model interpretability through the visualisa-
tion of the various feature maps as a function of sequence length. As
discussed in Section 3.5, one can compute a CAM (class activation
map) which can help determine how the features at each input posi-
tion have influenced the final prediction. Also recall from Section 3.6
that t2 allows for concatenation of arbitrary additional features; in
this work we consider the addition of redshift information.

Of the two options for concatenation, either in time or passband, we
adopt the approach of concatenating to L in time to give L’ = L + R,
where R = 2 with redshift and redshift error added as additional
features. This has the advantage that we explicitly pay attention to
redshift information and also get interpretability with respect to red-
shift information (see Section 3.6). For completeness, we also re-run
the photometric classification analysis discussed previously by con-
catenation to M, but we do not observe as good a performance as
concatenating to L. As we suspected, this may well be because we
are explicitly paying attention to redshift in the multi-head atten-
tion mechanism, whereas by concatenating to M we do not get this
benefit.

The CAM can then be computed by Equation 11, where M (1”)
indicates the influence each position of the input sequence has
on classification, which also includes redshift information, i.e.
I’ =1...,L+ R. We apply a min-max scaling and normalise the
CAM such that ZIL"R M. (') = 1, so that the relative activation
weights can be interpreted as a percentage.

We show in Figure 11 illustrative CAMs for two Supernova classes,
over-plotted with the lightcurves themselves. In each panel CAM
probabilities for each light curve time point are shown, in addition
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to the CAM probabilities for the additional features of redshift and
redshift error. Notice that for both examples the activation weight is
generally low before the initial rise of the light curve, larger at the
rise, with the strongest weight around the peak. Moderate weights are
observed in the tail, presumably to detect any secondary peak, with
the weights becoming insignificant once the light curve falls back to
zero.

As our architecture is able to include additional features, these
can also be inspected and visualised to gain further understanding
as to how much importance the model is paying towards them. In
our case, with the addition of redshift and redshift error information,
we also include bar plots in Figure 11 that depict the activation
weight for redshift and redshift error. We inspect the distribution of
the activation weights for redshift and redshift error for all classes
combined, which can be seen in Figure 12. The majority of activation
weighting relating to redshift and redshift error falls around 1%. We
also explored this distribution on an individual class by class basis but
did not find a significant difference across classes. Therefore, there
does not seem to be a particular class that benefits from redshift
information over another. The distributions indicate that for most
objects redshift informations accounts for a relative small proportion
of the total activation weights, with a mean of ~ 1.92%. However, it
should be noted that this is related to the L = 100 regularly sampled
points on the light curve, many of which are highly informative.
Furthermore, we recall that redshift on the whole is indeed important
for accurate classification where we achieve a logarithmic-loss of
0.507 when including redshift information and 0.873 when it is not
included (Section 5.2).

While we have shown CAMs to be useful for a first attempt to
bring interpretability to light curve classification, we acknowledge
more recent saliency mapping techniques that address some of the
shortcomings of CAMs. We commented earlier that in order to com-
pute CAMs we require the GAP layer. Although we have provided
separate motivation for using a GAP layer (see Section 3.4) it may
be the case that in the pursuit of better interpretability, requiring
a GAP layer unnecessarily restricts the flexibility of our model for
possible model extensions. Therefore it would be preferable to have
an explainable methodology that does not impose certain character-
istics on the architecture itself, and that can ideally probe a model
in a black-box fashion. Follow-up work by Selvaraju et al. (2017)
presented Grad-CAM that did away with the need for a GAP layer
to feed directly into the softmax and was agnostic to the downstream
task, but still required access to the internals of the model with gra-
dients. An interpretability method proposed by Petsiuk et al. (2018)
introduced randomised input sampling for explanation of black-box
models (RISE) to better estimate how salient aspects of the input
are for a model’s prediction, without the need for access to model
internals nor re-implementation of existing models.

It is expected that future studies for interpretability of photometric
classification architectures use techniques similar to RISE that can
treat the model as a black-box and yet provide more refined saliency
maps.

6 CONCLUSIONS

We have constructed a new deep learning architecture designed for
photometic classification of astronomical transients that we call the
time-series transformer or t2. The architecture is designed in such a
way to pay attention not only to light curves but also to any additional
features considered (e.g. redshift information) and to also provide in-
terpretability, again not only to light curves but also to additional
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Test Set Confusion Matrix; Log Loss = 0.507

ji-Lens-Single 0.00 000 000 000 005 000 000 001 001 001
TDE 001 000 001 000 000 001 003 001 000 0.00
EB 0.00 000 000 000 002 000 000 000 003 0.00 0
SNl 0.08 000 008 000 000 002 001 006 000 0.02
SNlax OEEN 000 012 000 000 006 000 013 000 0.01
Mira 000 000 000 000 0.00 0.00 000 000 0.00 0.6
5 SNIbc 0.00 000 000 008 0.12 000 003 000 002
g KN 0.00 000 000 000 0.07 0.04 000 0.00 0.00
M-dwarf 0.00 0.00 004 0.00 0.00 0.00 000 0.00 0.00 0.4
SNIa-0lbg 0.00 000 000 002 005 0.10 0.01
AGN 000 003 000 001 000 000 000 000 0.00 0.00
SNIla 000 001 000 003 009 000 003 000 0.00 0.01 02
RRL 0.00 000 005 000 000 000 000 000 0.00 0.00
SLSN-I 0.00 0.00 000 001 000 000 002 000 000 000 000 0.01
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Figure 8. Confusion matrix resulting from application of the time-series transformer, t2, to the PLAsTICC dataset in a representative setting with imbalanced
classes, achieving a logarithmic-loss of 0.507.
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Figure 9. Receiver operating characteristic (ROC) curve, under the same setting as those described in Figure 8. Micro- and macro-averaged AUC scores of 0.98
are achieved across the classes.

RASTI 000, 1-16 (2022)



13

Paying Attention to Astronomical Transients

Multi-Class Precision vs. Recall
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Figure 10. Precision-recall trade-off curve, under the same setting as those described in Figure 8. A micro-averaged AUC score of 0.87 is achieved across the
classes. The model understandably struggles with precision for Kilonovae (KN), which only constitutes 0.004% of the training sample.

features. While we are motivated by the problem of astronomical
transient classification, the architecture is suitable for general multi-
variate time-series data.

The time-series transformer, t2, is able to achieve results compa-
rable to the state-of-the-art in photometric classification and does so
on extremely imbalanced datasets. Our architecture is able to achieve
a logarithmic-loss of 0.507 on the PLAsSTiCC dataset defined in Sec-
tion 5.1 and Table 1. A direct comparison to other latest methods
laid out in HloZek et al. (2020) and Gabruseva et al. (2020) is un-
derstandably not possible since each classifier has been evaluated on
different data under different conditions, nonetheless, t2 is able to
achieve the lowest logarithmic-loss on such imbalanced data, without
the need for augmentation. Having such an imbalanced dataset, one
would expect that there would be bias towards the most common
classes, but t2 is robust enough to handle this. As noted in Lochner
et al. (2016), accurate photometric classification requires a repre-
sentative training dataset, but as discussed in Section 1 the data that
will be observed with upcoming surveys will be non-representative
of the training datasets that are currently available. While this work
focuses on the representative setting, the architecture lends itself well
to be able to be used in conjunction with latest augmentation tech-
niques, particularly Boone (2019) and Alves et al. (2022) with use of
Gaussian processes, that should help to alleviate non-representative
training dataset issues, and as such this will be considered in detail
in future work.

While t2 is already able to compete with state-of-the-art methods,
improvements could be made in future work to modify the com-
ponents of the architecture, while keeping the broad structure, e.g.
by replacing self-attention layers with alternative mixing transforms
such as Fourier transforms, which in recent work by Lee-Thorp et al.

(2021) have been shown to greatly improve efficiency and yet achieve
comparable or, in certain scenarios, superior performance.

The relatively few parameters involved, and hence faster training
times, compared to other deep learning methods makes t2 an at-
tractive architecture for potentially combining with active learning
methods or even off-line retraining should new data become available.
With the small model size, t2 should also appeal to upcoming broker-
ing systems such as FINK (Moller et al. 2021), ANTARES (Matheson
etal. 2021) efc. that benefit from low latency and fast inference times
when put into production. As we touched on in Section 2.3, the cur-
rent architecture forgoes the additional decoder found in the original
transformer architecture (Vaswani et al. 2017) that applies a casual
mask to the input. However, the inclusion of such a mask would
provide a natural mechanism within the time-series transformer ar-
chitecture for early light curve classification, which provides another
avenue of future work.

The time-series transformer, t2, minimises the reliance of expert
feature selection. Moving away from feature engineering allows the
model the freedom to discover patterns that are missed by humans
but yet provide powerful discriminative information for classification.
The architecture, by virtue of CAMs (class activation maps), offers
up a helpful tool for interpretability by inspecting the importance of
both light curves and any additional features that are included?. It is
hoped that with the introduction of the attention mechanism to the
field of astronomical photometric classification, further studies will
build on this work to improve our ability to attend to the night sky.

5 The reader is reminded of alternative interpretability techniques that may
provide better explainability such as RISE (Petsiuk et al. 2018).
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(b) Class activation map for a Supernova Type II drawn from the test set.

Figure 11. Class activation maps (CAM) for two types of Supernova drawn from the test set, with lightcurves for bands giruyz over-plotted. For visualisation
purposes, a min-max scaling is applied to the class activations as well as a normalisation to each CAM such that };» M (I") = 1, such that the relative activation
weights can be interpreted as a percentage. The left hand side depicts the percentage of activation weight attributed to each position in the sequence, while on
the right hand side we show the percentage activation weights associated with any additional features that have been added; in our case redshift and redshift
error. Notice that for both examples the activation weight is generally low before the initial rise of the light curve, larger at the rise, with the strongest weight
around the peak. Moderate weights are observed in the tail, presumably to detect any secondary peak, with the weights becoming insignificant once the light
curve falls back to zero. The influence of redshift and information can be seen on the right hand side, with ~ 0.6% and ~ 1.4% of the total activation weight

being attributed these additional features for each object, respectively.
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Figure 12. Distribution of activation weights for redshift and redshift error
for all classes combined. This plot is constructed for all classes combined
(minimal variability was observed across classes when plotted separately).
The mean redshift and redshift error activation weights are both 0.96. In
the centre of the plotted distribution we plot letter-value plots (Hofmann
et al. 2011) that are better suited to large datasets such as this. The middle
box contains 50% of the data, with the median indicated by a line at the
midpoint. The next smaller boxes combined contain 25% of the data, with
each successive level outward continuing in this fashion containing half of
the remaining data.
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