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Towards a fundamental understanding of our Universe

▷ Unanswered fundamental questions
▷ Imminent new data
▷ How can we bring AI to bear?
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Outline

1. Towards scientific AI

2. Statistical characterisation and generative modelling of cosmological fields
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Towards scientific AI



The AI hammer

AI
Hammer

Screw
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The AI cog

AI Cog
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Merging paradigms

AI

Statistics

e.g. Bayesian Inference,

Probability Theory

Applied Math

e.g. Optimization,

Harmonic Analysis

Physics

e.g. Physical

Properties, Models
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Scientific AI for the physical sciences

Scientific AI

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models

Explainability

Interpretability

Reliability
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Physics Enhanced Learning
Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)

Physical Machine Learning

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models

Explainability

Interpretability

Truthfulness
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Simple and easy to implement.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Common to augment image data-set
with rotations, flips, shifts, scales,
contrast, …

Image augmentation

▷ Simple and easy to implement.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Redshift augmentation of supernovae
observations (Boone 2019; Alves, et al.
2022, 2023)

Redshift augmentation

▷ Simple and easy to implement.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Data efficiency suffers: data “used” to learn physics, rather than problem.

▷ Simple and easy to implement.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Inductive biases required? Should we just learn from data?
▷ Highly computationally demanding.

▷ Improved data-efficiency.
▷ Inductive biases not necessarily strictly enforced.
▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Key factor CNNs so successful is due to
encoding translational equivariance.

Translational equivariance

▷ Inductive biases required? Should we just learn from data?
▷ Highly computationally demanding.

▷ Improved data-efficiency.
▷ Inductive biases not necessarily strictly enforced.
▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Geometric deep learning on the sphere
(Cobb et al. 2021; McEwen et al. 2022;
Ocampo, Price & McEwen 2023)

CMB observed on the
celestial sphere

▷ Inductive biases required? Should we just learn from data?
▷ Highly computationally demanding.

▷ Improved data-efficiency.
▷ Inductive biases not necessarily strictly enforced.
▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Equivariant machine learning,
structured like classical physics
(Villar et al. 2021)

Groups considered

▷ Inductive biases required? Should we just learn from data?
▷ Highly computationally demanding.

▷ Improved data-efficiency.
▷ Inductive biases not necessarily strictly enforced.
▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Inductive biases required? Should we just learn from data?
▷ Highly computationally demanding.

▷ Improved data-efficiency.
▷ Inductive biases not necessarily strictly enforced.
▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen 2023).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Physics informed neural networks (PINNs)
encode differentiable equations (e.g.
boundary conditions) in loss.

PINNs

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen 2023).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Differentiable physical models
▶ Radio interferometric telescope

(Mars et al. 2023, 2024, Liaudat et al. McEwen 2024)
▶ Optical PSF

(Liaudat et al. 2023)
▶ JAX-Cosmo

(Campagne et al. 2023)
SKA (artist impression)

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen 2023).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Differentiable mathematical methods
▶ Fourier transforms
▶ Spherical harmonic transforms

(s2fft; Price & McEwen 2023)
▶ Spherical wavelet transforms

(s2wav; Price et al. McEwen 2024)
▶ Spherical scattering transforms

(s2scat; Mousset et al. McEwen 2024)

Spherical harmonics

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen 2023).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen 2023).
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Probabilistic Learning
Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)

Physical Machine Learning

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models

Explainability

Interpretability

Truthfulness
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ MC Dropout (Gal & Ghahramani 2016): drop
nodes probabilistically to sample an
ensemble of networks.

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Bayes by Backprop (Blundel et al. 2015): model
distribution of weights (by variational
inference).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Probabilistic ML frameworks
(e.g. TensorFlow Probability).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Emulation: sample from learned prior
(Perraudin et al. 2020, Allys et al. 2020, Price et al.
2023, Price et al. in prep., Mousset et al. McEwen
2024)

Emulated cosmic string maps
(stringgen, Price et al. 2023, Price et al. in prep.)

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Integrate learned priors into analysis
(Remy et al. 2022, McEwen et al. 2023, Liaudat
et al. McEwen 2024)

Learn radio galaxy prior
(Liaudat et al. McEwen 2024)

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Enhanced MCMC for parameter estimation
(Grabrie et al. 2022, Karamanis et al. 2022).

Learned proposal distributions

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Enhanced Bayesian model selection
(harmonic; McEwen et al. 2021, Polanska et al.
2024, Piras et al. McEwen 2024, Spurio Mancini
et al. McEwen 2023, 2024).

▶ Only requires posterior samples.
▶ Agnostic to sampling technique.
▶ Scale to high dimensions.

Learned harmonic mean estimator
(harmonic)

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Simulation-based inference (Cranmer et al.
2021).

sbi

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Variational inference (Whitney et al. McEwen
2024)

Mass mapping with uncertainties
by variational inference

(Whitney et al. McEwen 2024)

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Intelligible AI
Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)

Physical Machine Learning

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models
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Truthfulness
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.

Jason McEwen 16

http://www.jasonmcewen.org


Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

▷ Feature importances
(Lochner et al. 2016)

Supernova feature importances

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
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▷ Saliency maps
(Bhambra et al. 2022)

Galaxy saliency mapping

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
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Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models such as wavelet
scattering networks
(Allys et al. 2020, Cheng et al. 2020, McEwen
et al. 2022, Mousset et al. McEwen 2024)
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• • •
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• • •
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S[j]f
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• • •
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Scattering network (McEwen et al. 2022)
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LSS features captured by wavelets
(Allys et al. 2020)

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).

Jason McEwen 17

https://arxiv.org/abs/2006.06298
https://arxiv.org/abs/2006.08561
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/arXiv:2407.07007
https://arxiv.org/abs/2006.06298
https://www.tng-project.org/
https://www.camel-simulations.org/
https://quijote-simulations.readthedocs.io/en/latest/
http://www.cosmogrid.ai/
http://www.star.ucl.ac.uk/GowerStreetSims/README.html
http://www.jasonmcewen.org


Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Interpretable constraints on ML models,
e.g. convexity
(Liaudat et al. McEwen 2024)

Impose convexity on learned model
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Deep priors learned from training data
(hybrid model-based and data-driven)
(Remy et al. 2022, McEwen et al. 2023,
Liaudat et al. McEwen 2024)

Compute Bayesian evidence for
model selection

(proxnest, McEwen et al. 2023)

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid, Gower St).
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Truthfulness

Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

▷ Uncertainties not aways meaningful.
▷ Diversity of ML model often lacking.

▷ Integrate in statistical framework to inherit theoretical guarantees.
▷ Design to be conservative and avoid mode collapse.
▷ Extensive validation tests.
▷ Well-posed frameworks (e.g. physics enhanced, probabilistic).

Jason McEwen 18
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▷ Validity of statistical distributions
(Lueckmann et al. 2021, Hermans et al. 2022,
Cannon et al. 2023)

▶ Design to ensure conservative and avoid
mode collapse (Delaunoy et al. 2022, Price
et al. 2023, Whitney et al. McEwen 2024)

▶ Coverage testing (Lemos et al. 2023)
▶ Simulation-based calibration checks (Talts

et al. 2020) Validity of distribution
(Hermans et al. 2022)
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Statistical characterisation and
generative modelling of cosmological
fields



Wavelet scattering networks and representations

Wavelet scattering networks and representations inspired by CNNs but designed rather
than learned filters (Mallat 2012).

⇝ Scattering networks on the sphere
(McEwen et al. 2022, ICLR, arXiv:2102.02828)

⇝ Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset et al. McEwen 2024, A&A, arXiv:2407.07007)
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Wavelets on the sphere

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).

Wavelets ψj ∈ L2(S2) capture spatially-localised, high-frequency signal content at scale j.

Scaling function ϕ ∈ L2(S2) captures spatially-localised, low-frequency content.

Spherical wavelet transform given by

Wj(ρ) = ( f ⋆ ψj )(ρ) =

∫
S2
dµ(ω′)f(ω′)( Rρψj )

∗(ω′).

Spherical convolution Rotated wavelet

Fast algorithms available
(e.g. McEwen et al. 2007, 2013, 2015).

Orthographic plot of spherical wavelets.
Jason McEwen 20
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Scattering transform on the sphere

Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.

Jason McEwen 21

http://www.jasonmcewen.org


Scattering transform on the sphere

Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.

Jason McEwen 21

http://www.jasonmcewen.org


Scattering transform on the sphere

Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.

Jason McEwen 21

http://www.jasonmcewen.org


Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
SPf = {S[p]f : p ∈ P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1, j2, . . . , jd) : J0 ≤ ji ≤ J, 1 ≤ i ≤ d, d ∈ N0} .

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f

Capture all information content at infinite depth and typically > 99% for depth d = 3.
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Properties

Latent representation is very well-behaved and satisfies a number of important
properties:

1. Rotational equivariance

2. Isometric invariance

3. Stability to diffeomorphisms

Jason McEwen 23
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Rotationally equivariance

Rotational Equivariance (
(Rρf) ⋆ ψ

)
(ρ′) = (Rρ(f ⋆ ψ))(ρ′).

A

A

Rρ

Rρ
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Isometric invariance

Isometric Invariance
Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Scattering network representation is invariant to isometries up to a scale .

Difference in representation.
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Isometric invariance

Image Representation Scattering Representation

Isometry
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Stability to diffeomorphisms

Stability to Diffeomorphisms
Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Scattering network representation is stable to small diffeomorphisms about isometry .

Difference in representation.
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism

Large diffeomorphism Large diffeomorphism
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Toy problem: Gaussianity of the cosmic microwave background (CMB)

Wavelet scattering as a representation space for classification.

Gaussian Non-Gaussian

⇝ 53% classification accuracy without scattering versus 95% with scattering.
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Scattering for simulation-based inference (SBI)

Wavelet scattering as a representation space for SBI (Lin, Joachimi & McEwen 2024).
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Spherical scattering covariance for generative modelling

Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset et al. McEwen 2024; s2scat code)

Scattering covariance statistics:

1. S1[λ] f = E
[
|f ⋆ ψλ|

]
.

2. S2[λ] f = E
[
|f ⋆ ψλ|2

]
.

3. S3[λ1, λ2] f = Cov
[
f ⋆ ψλ2 , |f ⋆ ψλ1 | ⋆ ψλ2

]
.

4. S4[λ1, λ2, λ3] f = Cov
[
|f ⋆ ψλ1 | ⋆ ψλ3 , |f ⋆ ψλ2 | ⋆ ψλ3

]
.

Generative modelling by matching set of scattering covariance statistics S(f) with a
(single) target simulation:

min
f

∥S(f)− S(ftarget)∥2.
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Differentiable and GPU-accelerated spherical transform codes (in JAX)

s2fft: Spherical harmonic transforms
https://github.com/astro-informatics/s2fft

s2wav: Spherical wavelet transforms
https://github.com/astro-informatics/s2wav

s2scat: Spherical scattering transforms
https://github.com/astro-informatics/s2scat

s2ai: Spherical AI
Coming very soon! Contact us for early access.
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Generative modelling of large scale structure (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of weak lensing field.
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Generative modelling of large scale structure (LSS)

Pixel distribution Power spectrum Minkowski functionals

Statistical validation.
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Generative modelling of cosmic strings in the CMB

Need to simulate full physics, evolving a network of strings through cosmic time, and
then ray-trace CMB photons through the string network (Ringeval et al. 2012).

A single simulation requires 800,000 CPU hours on a supercomputer.

There are only three full-sky string maps in existence.
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Generative modelling of cosmic strings in the CMB

Computation time: 800,000 CPU hours on supercomputer → O(1) hours on A100 GPU.

Still work in progress (statistical validation in progress).
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Summary

Scientific AI

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models

Explainability

Interpretability

Reliability

With great power comes great responsibility!
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