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Motivation and introduction



Cosmic timeline
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Cosmic microwave background (CMB) radiation

What is the origin of structure in our Universe?

Planck satellite CMB

Jason McEwen 2

http://www.jasonmcewen.org


Epoch of reionisation

How did the first luminous objects in the Universe form?

Square Kilometre Array (SKA) Ionised bubbles in neutral hydrogen
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Large-scale structure of the Universe

What is the nature of dark energy?

Euclid satellite Large-scale structure
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Model selection in cosmology

These are questions of model selection.

In cosmology we cannot perform experiments but just have one Universe to observe.

⇝ Bayesian model selection
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Bayesian inference: parameter estimation

Bayes’ theorem

p(θ | x,M)

posterior

=
p(x | θ,M)

likelihood

p(θ |M)

prior

p(x |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data x.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model comparison

By Bayes’ theorem for model Mj:

p(Mj | x) =
p(x |Mj)p(Mj)∑
j p(x |Mj)p(Mj)

.

For model comparison, consider posterior model
odds:

p(M1 | x)
p(M2 | x)

posterior odds

=
p(x |M1)

p(x |M2)

Bayes factor

× p(M1)

p(M2)

prior odds

.

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z = p(x |M) =

∫
dθ L(θ) π(θ) .

⇝ Challenging computational problem.
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Model scenarios and Bayesian consistency

M-closed scenario
True model is in set of models M.

M-open scenario (model misspecification)
True model is not in set of models M.

Parameter estimation consistency
M-closed: parameter point estimators (MMSE
and MAP) converge to true parameters
(Bernardo & Smith 1994).

M-open: parameter point estimators (MMSE
and MAP) converge to best-fit parameters of
model considered (Bernardo & Smith 1994).

Model selection consistency

M-closed: posterior model distribution
concentrates on true model (Dawid 2011).

M-open: posterior model distribution
concentrates on model closest in KL divergence
(Dawid 2011).

⇝ Bayesian parameter estimation and model selection are consistent.
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Challenge of Bayesian model selection

Naive Monte Carlo integration to compute marginal likelihood not effective.

Require tailored computational techniques, such as nested sampling (Skilling 2006).

Challenges:
▷ Support general sampling strategies.
▷ Support simulation-based inference (SBI) and variational inference (VI).
▷ Scale to high-dimensions.
▷ Support data-driven AI priors (e.g. priors captured by generative models).
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Merging paradigms

Merging

Paradigms

Statistics

e.g. Bayesian Inference,

Probability Theory

Applied Math

e.g. Optimization,

Proximal Calculus

Computer Science

e.g. Machine Learning,

Scientific Computing
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Outline

1. Motivation and introduction

2. AI-assisted Bayesian model comparison

3. AI data-driven priors in high-dimensions
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AI-assisted Bayesian model comparison



Learning model posterior odds ratio

Leverage the likelihood ratio trick (Goodfellow et al. 2014, Cranmer et al. 2020) to learn
model posterior odds ratio directly.

Train a classifier to distinguish models, e.g. with cross-entropy loss, which learns ratio

r(x) = p(M1 | x)
p(M2 | x)

.

Numerous works considering this approach or variants (Radev et al. 2021, Spurio Mancini
et al. McEwen 2023, Elsemüller et al. 2024, Jeffrey et al. 2024, Karchev et al. 2023).

⇝ No consistency guarantees for M-open scenario.
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Nested sampling: reparameterising the likelihood

Nested sampling: ingenious approach to efficiently evaluate the evidence (Skilling 2006).

Group the parameter space Ω into a series of nested subspaces:
ΩL∗ = {x | L(x) ≥ L∗}. Define the prior volume ξ within ΩL∗ by

ξ(L∗) =
∫
ΩL∗

π(x)dx.

Evidence can then be rewritten as

z =
∫ 1

0
L(ξ)dξ.

Require computational strategy to compute likelihood level-sets
(iso-contours) Li and corresponding prior volumes 0 < ξi ≤ 1.

L1
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L3

L4
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The problem of nested sampling

Many highly effective nested sampling algorithms (for a review see Ashton et al. 2022).

Method of choice for the past almost two decades!

However, nested sampling has a fundamental problem…

Nested sampling tightly couples sampling strategy to marginal likelihood calculation.

As the name suggests, one must sample in a nested manner.
▷ Precludes many alternative accelerated sampling strategies that scale to high-dimensions.
▷ Precludes use in many simulation-based inference (SBI) and variational inference (VI)

settings, where one draws posterior samples directly.
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

ρ = Ep(θ |x)

[
1

L(θ)

]

=

∫
dθ 1

L(θ)
p(θ | x) =

∫
dθ 1

L(θ)
L(θ)π(θ)

z =
1
z

Original harmonic mean estimator (Newton & Raftery 1994)

ρ̂ =
1
N

N∑
i=1

1
L(θi)

, θi ∼ p(θ | x)

Only requires posterior samples! But can fail catastrophically! (Neal 1994)
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Learned harmonic mean estimator

Propose the learned harmonic mean estimator, leveraging AI to solve the catastrophic
failure of the original harmonic mean (McEwen, Wallis, Price, Spurio Mancini 2021;
arXiv:2111.12720).

Matt PriceChris Wallis Alessio Spurio Mancini
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Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | x) = 1

z

∫
dθ π(θ)

p(θ | x)p(θ | x)

importance sampling

.

Importance sampling interpretation:

▷ Importance sampling target distribution is prior π(θ).
▷ Importance sampling density is posterior p(θ | x).

For importance sampling, want sampling density to have fatter tails than target.

Importance sampling failure mode when sampling density is posterior and target is prior.
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Re-targeted harmonic mean estimator

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

ρ = Ep(θ |x)

[
φ(θ)

L(θ)π(θ)

]
=

1
z

Normalised distribution φ(θ) now plays the role of the importance sampling target
⇝ must not have fatter tails than posterior.

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

ρ̂ =
1
N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ p(θ | x)

Jason McEwen 18
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How set importance sampling target distribution φ(θ)?

Variety of cases been considered:

▷ Multi-variate Gaussian (e.g. Chib 1995)
▷ Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target: (McEwen et al. 2021)

φoptimal(θ) =
L(θ)π(θ)

z .

But clearly not feasible since requires knowledge of the evidence z (recall the target must
be normalised)⇝ requires problem to have been solved already!

Jason McEwen 19
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Learned harmonic mean estimator

Learn an approximation of the optimal target distribution:

φ(θ)
ML≃ φoptimal(θ) =

L(θ)π(θ)
z .

▷ Approximation not required to be highly accurate.
▷ Must not have fatter tails than posterior.
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Constraining tails of target approach 1: bespoke optimisation problem

Fit density estimator by minimising variance of resulting estimator, while ensuring
unbiased, with possible regularisation:

min σ̂2 + λR subject to ρ̂ = µ̂1.

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select density estimation model and hyperparameters.

Jason McEwen 21
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Rosenbrock example

Rosenbrock function is the classical example of a pronounced thin curving degeneracy,
with likelihood defined by

f(θ) =
n−1∑
i=1

[
(a− θi)

2 + b(θi+1 − θ2i )
2
]
, log(L(θ)) = −f(θ) .

Posterior recovered by MCMC sampling.Jason McEwen 22
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Rosenbrock example

Reciprocal evidence

Variance of reciprocal evidence

Accuracy of learnt harmonic mean estimator for Rosenbrock example.
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Atacama Cosmology Telescope (ACT) analysis

Compare ΛCDM (Einstein’s cosmological constant) vs w0waCDM (dynamical dark energy)
using learned harmonic mean (McEwen et al.2021) with ACT data (Aiola et al. 2020).

Atacama Cosmology
Telescope (ACT)

CMB observations

7D vs 9D models: ΛCDM w0waCDM log BFΛCDM-w0waCDM

Nested sampling −168.92± 0.35 −169.38± 0.24 0.46± 0.42
Learned harmonic mean −168.87± 0.29 −169.32± 0.25 0.45± 0.38

⇝ ΛCDM mildly favoured ⇝ 3× acceleration
Jason McEwen 24

https://arxiv.org/abs/2111.12720
http://www.jasonmcewen.org


Constraining tails of target approach 2: normalizing flows

Learned harmonic mean with normalizing flows (Polanska et al. 2024; arXiv:2405.05969)

Elegant way to constrain tails of target distribution φ(θ).

Alicja Polanska Davide Piras Alessio Spurio ManciniMatt Price
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Constraining tails of target approach 2: normalizing flows

Concentrate probability of target by lowering
temperature T (variance) of the base distribution.

Flexible: no bespoke training; can vary T after training.
Robust: only one hyperparameter T that does not require fine tuning.
Scalable: flows scale to higher dimensions than classical density estimators.
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Dark Enery Survey (DES)-like analysis

Compare ΛCDM vs wCDM using learned
harmonic mean with DES Year-1 lensing and
clustering simulations (Polanska et al. 2024).

Dark Energy Survey
(DES)

Lensing observations

20D vs 21D models: log(zΛCDM) log(zwCDM) log BFΛCDM-wCDM Computation time (64 CPU cores)

Nested sampling −65.21± 0.32 −67.44± 0.32 2.23± 0.45 94 hours
Learned harmonic mean −65.262+0.011

−0.011 −67.4070.009−0.009 2.1450.014−0.014 16 hours

⇝ 6× acceleration
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Leveraging AI to accelerate Bayesian inference further

4 pillars of AI-accelerated Bayesian inference (Piras et al. 2024; arXiv:2405.12965).

1. Emulation to accelerate physical model encapsulated in likelihood,
e.g. CosmoPower (Spurio Mancini et al. 2022, Piras & Spurio Mancini 2023)

2. Differentiable and probabilistic programming to accelerate gradient calculations
and development of statistical models, e.g. JAX, NumPyro

3. Scalable (gradient-based) MCMC sampling to accelerate sampling and parameter
estimation, e.g. NUTS

4. Scalable and decoupled marginal likelihood computation to accelerate model
selection, e.g. learned harmonic mean (McEwen et al.2021, Polanska et al. 2024)
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Euclid (Stage IV survey)-like analysis

Compare ΛCDM vs w0waCDM leveraging 4 pillars
of AI-acceleration with Euclid-like lensing and
clustering simulations (Piras et al. 2024).

Euclid satellite Observation field

37D vs 39D models: log(zΛCDM) log(zw0waCDM) log BFΛCDM-w0waCDM Total computation time

Classical −107.03± 0.27 −107.81± 0.74 0.78± 0.79 8 months (48 CPUs)
AI-accelerated (ours) 40956.55± 0.06 40955.03± 0.04 1.53± 0.07 2 days (12 GPUs)

⇝ 120× acceleration
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Euclid-Rubin-Roman (3× Stage IV survey)-like analysis

Extend to combined 3× Stage IV
Survey-like lensing and clustering
simulations (Piras et al. 2024).

Euclid satellite Rubin observatory Roman satellite

157D vs 159D models: log(zΛCDM) log(zw0waCDM) log BF Total computation time

Classical Unfeasible Unfeasible Unfeasible 12 years projected (48 CPUs)
AI-accelerated (ours) 406689.6+0.5

−0.3 406687.7+0.5
−0.3 1.9+0.7

−0.5 8 days (24 GPUs)

⇝ Opens up new analyses (550× acceleration)
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Simulation-based inference (SBI)

Simulation-based inference (aka. likelihood-free inference) seeks to perform Bayesian
inference by estimating the posterior p(θ | xo,M) of parameters θ for observed data xo
using simulations only.

Key advantages:

▷ Forward modelling of complex physics, systematics, observational process.
▷ No assumptions on the form of the likelihood.
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Field-level SBI pipeline for Euclid cosmic shear
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Could field-level SBI distinguish dynamical dark energy?

Recent results from DESI experiment provide tantalising hints of dynamical dark energy
(Adame et al. 2024a, 2024b).

If these results reflected true underlying nature of the Universe, could a field-level SBI
analysis of a Stage IV survey distinguish dynamical dark energy definitively?
(Spurio Mancini et al. 2024; arXiv:2410.10616)

Kiyam LinAlessio Spurio Mancini

Jason McEwen 33

https://arxiv.org/abs/2410.10616
http://www.jasonmcewen.org


Could field-level SBI distinguish dynamical dark energy?

If these results reflected true underlying nature of the Universe, could a field-level SBI
analysis of a Stage IV survey distinguish dynamical dark energy definitively?
(Spurio Mancini et al. 2024; arXiv:2410.10616)

Jason McEwen 34

https://arxiv.org/abs/2410.10616
http://www.jasonmcewen.org


AI data-driven priors in high-dimensions



Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems
with Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

⇝ Proximal nested sampling (Cai, McEwen & Pereyra 2022; arXiv:2106.03646)

Xiaohao Cai Marcelo Pereyra
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) = exp(−g(x))

Likelihood

, π(x) = exp(−f(x))

Prior

,

where g = − logL is convex lower semicontinuous function (prior need not be log-convex).

Let ιL∗(x) and χL∗(x) be the indicator and characteristic functions:

ιL∗(x) =
{
1, L(x) > L∗,
0, otherwise,

and χL∗(x) =
{
0, L(x) > L∗,
+∞, otherwise.

(1)

Let πL∗(x) = π(x)ιL∗(x) represent prior distribution with hard likelihood constraint.
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Constrained sampling formulation

Taking the logarithm, we can write

− log πL∗(x) = − log π(x) + χBτ
(x) ,

where χBτ
(x) is the characteristic function associated with the convex set

Bτ := {x | − logL(x) < τ},

for τ = − log L∗.
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.

Jason McEwen 38

http://www.jasonmcewen.org


MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2∇ log p

(
x(t)

)
dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.

Jason McEwen 38

http://www.jasonmcewen.org


MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2 ∇ log p

(
x(t)

)
Gradient

dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.

Jason McEwen 38

http://www.jasonmcewen.org


Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation
The Morea-Yosida approximation of a
convex function f : Rn → R is given by
the infimal convolution:

fλ(x) = infu∈RN
f(u) + ∥u− x∥2

2λ

M-Y envelope of |x| for varying λ.

Important properties of fλ(x):

1. As λ → 0, fλ(x) → f(x)

2. ∇fλ(x) = (x− proxλf (x))/λ

▷ Regularise non-differentiable function
(e.g. likelihood level-set constraint!)

▷ Compute gradient by prox.

▷ Leverage gradient-based Bayesian
computation.
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Proximal nested sampling

Proximal nested sampling (Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

▷ Constrained sampling formulation
▷ Langevin MCMC sampling
▷ Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+

√
δw(k+1) .
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]

+
√
δw(k+1).

1. x(k) is already in Bτ : term
[
x(k) − proxλχBτ

(x(k))
]

disappears and recover usual Langevin MCMC.

2. x(k) is not in Bτ : a step is also taken in the direction
−
[
x(k) − proxλχBτ

(x(k))
]
, which moves the next iteration

in the direction of the projection of x(k) onto the
convex set Bτ . Acts to push the Markov chain back
into the constraint set Bτ if it wanders outside of it.
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. − log π(x) = ∥Ψ†x∥1), can also
make Moreau-Yosida approximation fλ(x) and leverage prox to compute gradient ∇fλ:

x(k+1) = x(k) − δ

2λ
[
x(k) − proxλ− log π(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .

Jason McEwen 42

http://www.jasonmcewen.org


Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. − log π(x) = ∥Ψ†x∥1), can also
make Moreau-Yosida approximation fλ(x) and leverage prox to compute gradient ∇fλ:

x(k+1) = x(k) − δ

2λ
[
x(k) − proxλ− log π(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .

Jason McEwen 42

http://www.jasonmcewen.org


Explicit forms of proximal nested sampling

But how do we compute the proximity operators?

Consider common imaging problem as example:

− logL(x) =
∥∥y−Φx

∥∥2
2 + const.

Likelihood

Straightforward when Φ is identity.
Otherwise express as equivalent
saddle-point problem and solve using
primal-dual method.

− log π(x) =
∥∥Ψ†x

∥∥
1 + const.

Prior

proxλ− log π(x) = x+Ψ
(
softλµ(Ψ†x′)−Ψ†x

)
,
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Computing proximal operator for likelihood

Prox for the likelihood is equivalent to the saddle-point problem:

min
x∈Rd

max
z∈CK

{
z†Φx− χ∗

B′
τ′
(z) + ∥x− x′∥22/2

}
.

Solve iteratively by primal dual method:

1. z(i+1) = z(i) + δ1Φx̄(i) − proxχB′
τ′
(z(i) + δ1Φx̄(i)),

where proxχB′
τ′
(z) = projB′

τ′
(z) =

z, if z ∈ B′
τ ′ ,

z−y
∥z−y∥2

√
2τσ2 + y, otherwise.

2. x(i+1) = (x′ + x(i) − δ2Φ
†z(i+1))/2

3. x̄(i+1) = x(i+1) + δ3(x(i+1) − x(i))

Jason McEwen 44

http://www.jasonmcewen.org


Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Aim: integrate learned deep data-driven priors into proximal nested sampling.

Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).
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Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).
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Proximal nested sampling with deep data driven-priors

Proximal nested sampling with data driven-priors for physical scientists
(McEwen, Liaudat, Price, Cai & Pereyra 2023; arXiv:2307.00056)

Tobias Liaudat Xiaohao CaiHenry Aldridge Marcelo PereyraMatt Price

Jason McEwen 46

https://arxiv.org/abs/2307.00056
http://www.jasonmcewen.org


Tweedie’s formula

Tweedie’s formula
Consider noisy observations z ∼ N (x, σ2I) of x sampled from some underlying prior.

Tweedie’s formula gives the posterior expectation of x given z as

E(x | z) = z+ σ2∇ log p(z),

where p(z) is the marginal distribution of z.

▷ Can be interpreted as a denoising strategy.

▷ Can be used to relate a denoiser (potentially a trained deep neural network) to the
score ∇ log p(z).
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable or proper.

⇝ Consider regularised prior defined by Gaussian smoothing:

πϵ(x) = (2πϵ)−d/2
∫

dx′ exp(| x− x′∥22/(2ϵ)) π(x′).

Consider learned denoiser Dϵ trained to recover x from noisy observations xϵ ∼ N (x, ϵI).

By Tweedie’s formula the score of the regualised prior related to the learned denoiser by

∇ log πϵ(x) = ϵ−1(Dϵ(x)− x).
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Proximal nested sampling with learned data-driven priors

Substituting the denoiser ∇ log πϵ(x) = ϵ−1(Dϵ(x)− x) into the proximal nested
sampling Markov chain update:

x(k+1) = x(k) − δ

2ϵ
[
x(k) − Dϵ(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .
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Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:
▷ hand-crafted prior based on sparsity-promoting wavelet representation;
▷ data-driven priors based on a deep neural networks

(Goujon et al. 2023, Ryu et al. 2019).

Which model best?
▷ SNR (require ground-truth) ⇒ data-driven priors best;
▷ Bayesian evidence (no ground-truth knowledge) ⇒ data-driven priors best.
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Summary



Summary

▷ AI-assisted Bayesian model comparison
▶ Learned harmonic mean (McEwen et al. 2021; arXiv:2111.12720)
▶ Learned harmonic mean with normalizing flows (Polanska et al. 2024; arXiv:2405.05969)
▶ 4 pillars of AI-accelerated Bayesian inference (Piras et al. 2024; arXiv:2405.12965)
▶ Bayesian model comparison for SBI (Spurio Mancini et al. 2022; arXiv:2207.04037)
▶ Field-level SBI model comparison (Spurio Mancini et al. 2024; arXiv:2410.10616)

▷ AI data-driven priors in high-dimensions
▶ Proximal nested sampling (Cai et al. 2021; arXiv:2106.03646)
▶ Learned proximal nested sampling (McEwen et al. 2023; arXiv:2307.00056)
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Extra slides
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Occam’s razor

The Bayesian model evidence naturally incorporates Occam’s razor, trading off model
complexity and goodness of fit.

▷ In Bayesian formalism models specified as
probability distributions over datasets.

▷ Each model has limited “probability budget”.
▷ Complex models can represent a wide range of

datasets well, but spreads predictive probability.
▷ In doing so, model evidence of complex models

penalised if complexity not required. Gh
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On priors

▷ Physics-informed priors
e.g. mass constrained to be positive

▷ Uninformative prior
e.g. invariance to symmetry transformations

▷ Informative priors
e.g. regularize by imposing sparsity in dictionary

▷ Data-informed priors
e.g. prior ∼ old data, likelihood ∼ new data, posterior ∼ old and new data

▷ Data-driven priors
e.g. empirical Bayes (estimate prior from data), learn by machine learning (generative models)
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Robustness to choice of temperature hyperparameter

Marginal likelihood estimates for Rosenbrock example
with varying temperature (Polanska et al. 2024).

▷ Marginal likelihood estimates robust to
choice of temperature.

▷ Temperature of T = 0.90 suitable for
most cases.
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