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Goal
Bayesian parameter estimation and model selection

for inverse imaging problems…

with data-driven priors (learned regularisation).
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Questions that can be addressed by model selection

▷ What is the best forward model?
▷ (How set regularisation strength?)
▷ What is the best learned data-driven prior (regulariser)?
▷ What is the best training data-set?
▷ …

Address these questions using the data itself… not by, e.g., cross-validation.
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Leveraging paradigms

Leveraging

Paradigms

Statistics

e.g. Bayesian Inference,

Probability Theory

Applied Math

e.g. Optimization,

Proximal Calculus

Computer Science

e.g. Machine Learning,

Scientific Computing
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Outline

1. Nested sampling

2. Proximal nested sampling

3. Learned data-driven priors
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Nested sampling



Bayesian inference: parameter estimation

First, let’s set the notation (and colour code)…

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model selection

By Bayes’ theorem for model Mj:

p(Mj | y) =
p(y |Mj)p(Mj)∑
j p(y |Mj)p(Mj)

.

For model selection, consider posterior model odds:

p(M1 | y)
p(M2 | y)

posterior odds

=
p(y |M1)

p(y |M2)

Bayes factor

× p(M1)

p(M2)

prior odds

.

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z = p(y |M) =

∫
dθ L(θ) π(θ) .

→ Extremely challenging computational problem in high-dimensions.
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Occam’s razor

The marginal likelihood naturally incorporates Occam’s razor, trading off model
complexity and goodness of fit.

▷ In Bayesian formalism models specified as
probability distributions over datasets.

▷ Each model has limited “probability budget”.
▷ Complex models can represent a wide range of

datasets well, but spreads predictive probability.
▷ In doing so, marginal likelihood of complex

models penalised if complexity not required. Gh
ah

ra
m
an

i(
20

13
);
M
ac
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y
(1
99

1)
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On priors

▷ Physics-informed priors
e.g. mass constrained to be positive

▷ Uninformative prior
e.g. objective Bayes, invariance to symmetry transformations

▷ Informative priors
e.g. regularize by imposing sparsity in dictionary

▷ Data-informed priors
e.g. prior ∼ old data, likelihood ∼ new data, posterior ∼ old and new data

▷ Data-driven priors
e.g. empirical Bayes (estimate prior from data), learn by machine learning (generative models)
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Nested sampling: reparameterising the likelihood

Nested sampling is ingenious approach to evaluate the marginal likelihood (Skilling 2006).

Consider ΩL∗ = {x|L(x) ≥ L∗}, which groups the parameter
space Ω into a series of nested subspaces.

Define the prior volume ξ within ΩL∗ by ξ(L∗) =
∫
ΩL∗

π(x)dx.

The marginal likelihood integral can then be rewritten as

z =
∫ 1

0
L(ξ)dξ,

which is a one-dimensional integral over the prior volume ξ.

L1
L2

L3

L4

. .

.

.

Fe
ro
ze

ta
l.
(2
01
3)

Nested subspaces

.

L1

L2

L3

L4

X1

.

.

.

.

X2X3X4 Fe
ro
ze

ta
l.
(2
01
3)

Reparameterised
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) Li and corresponding
prior volumes 0 < ξi ≤ 1.

Nested sampling (Skilling 2006)

1. Draw Nlive live samples from prior, with prior volume ξ0 = 1.
2. Remove sample with smallest likelihood, say Li.
3. Replace removed sample with new sample from the prior but constrained to a

higher likelihood than Li.
4. Estimate (stochastically) prior volume ξi enclosed by likelihood level-set Li.
5. Repeat 2–5.
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {ξi}Ni=0 and corresponding likelihoods
Li = L(ξi), the marginal likelihood can be computed numerically using standard
quadrature:

z =
N∑
i=1

Liwi ,

for quadrature weight wi (e.g. the trapezium rule with wi = (ξi−1 + ξi+1)/2).

Posterior inferences can also be computed by assigning importances weights

pi =
Liwi
z .
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Nested sampling: challenge

Recall: to compute the marginal likelihood by nested sampling require strategy to
generate likelihoods Li and associated prior volumes ξi.

Crux: sample from the prior, subject to the likelihood level-set constraint, i.e. sample from
the prior π(x), such that L(x) > L∗.

This is the main difficulty in applying nested sampling to high-dimensional problems.
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Proximal nested sampling



Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems
with Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

⇒ Proximal nested sampling (Cai, McEwen & Pereyra 2022; arXiv:2106.03646)

Xiaohao Cai Marcelo Pereyra

Jason McEwen 12

https://arxiv.org/abs/2106.03646
http://www.jasonmcewen.org


Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) ∝ exp(−g(x))

Likelihood

, π(x) ∝ exp(−f(x))

Prior

,

where g is convex lower semicontinuous function (prior need not be log-convex).

Let ιL∗(x) and χL∗(x) be the indicator and characteristic functions:

ιL∗(x) =
{
1, L(x) > L∗,
0, otherwise,

and χL∗(x) =
{
0, L(x) > L∗,
+∞, otherwise.

(1)

Let πL∗(x) = π(x)ιL∗(x) represent prior distribution with hard likelihood constraint.

Equivalently, − log πL∗(x) = − log π(x) + χBτ
(x) , Bτ := {x | − logL(x) < τ}, τ = − log L∗.
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation
The Morea-Yosida approximation of a
convex function f : Rn → R is given by
the infimal convolution:

fλ(x) = infu∈RN
f(u) + ∥u− x∥2

2λ

M-Y envelope of |x| for varying λ.

Important properties of fλ(x):

1. As λ → 0, fλ(x) → f(x)

2. ∇fλ(x) = (x− proxλf (x))/λ

▷ Regularise non-differentiable function
(e.g. likelihood level-set constraint!)

▷ Compute gradient by prox.

▷ Leverage gradient-based Bayesian
computation.
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Proximal nested sampling

Proximal nested sampling (Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

▷ Constrained sampling formulation
▷ Langevin MCMC sampling
▷ Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+

√
δw(k+1) .
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]

+
√
δw(k+1).

1. x(k) is already in Bτ : term
[
x(k) − proxλχBτ

(x(k))
]

disappears and recover usual Langevin MCMC.

2. x(k) is not in Bτ : a step is also taken in the direction
−
[
x(k) − proxλχBτ

(x(k))
]
, which moves the next iteration

in the direction of the projection of x(k) onto the
convex set Bτ . Acts to push the Markov chain back
into the constraint set Bτ if it wanders outside of it.
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. − log π(x) = ∥Ψ†x∥1), can also
make Moreau-Yosida approximation fλ(x) and leverage prox to compute gradient ∇fλ:

x(k+1) = x(k) − δ

2λ
[
x(k) − proxλ− log π(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .

Jason McEwen 18

http://www.jasonmcewen.org


Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. − log π(x) = ∥Ψ†x∥1), can also
make Moreau-Yosida approximation fλ(x) and leverage prox to compute gradient ∇fλ:

x(k+1) = x(k) − δ

2λ
[
x(k) − proxλ− log π(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .

Jason McEwen 18

http://www.jasonmcewen.org


Explicit forms of proximal nested sampling

Must compute the proximity operators.

Consider common imaging problem as example:

− logL(x) =
∥∥y−Φx

∥∥2
2 + const.

Likelihood

Straightforward when Φ is identity.
Otherwise express as equivalent
saddle-point problem and solve using
primal-dual method.

− log π(x) =
∥∥Ψ†x

∥∥
1 + const.

Prior

proxλ− log π(x) = x+Ψ
(
softλµ(Ψ†x′)−Ψ†x

)
,
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Computing proximal operator for likelihood

Prox for the likelihood is equivalent to the saddle-point problem:

min
x∈Rd

max
z∈CK

{
z†Φx− χ∗

B′
τ′
(z) + ∥x− x′∥22/2

}
.

Solve iteratively by primal dual method:

1. z(i+1) = z(i) + δ1Φx̄(i) − proxχB′
τ′
(z(i) + δ1Φx̄(i)),

where proxχB′
τ′
(z) = projB′

τ′
(z) =

z, if z ∈ B′
τ ′ ,

z−y
∥z−y∥2

√
2τσ2 + y, otherwise.

2. x(i+1) = (x′ + x(i) − δ2Φ
†z(i+1))/2

3. x̄(i+1) = x(i+1) + δ3(x(i+1) − x(i))
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Validation on Gaussian problem
lo
g
(V

×
Z
)

Dimension

lo
g
(V

×
Z
)

Dimension

Comparison of proximal nested sampling (red), naive MC integration (blue) and ground truth (black).

Also validated in 106 dimensions.
Truth: 2.3850× 105 Proximal nested sampling: (2.3851± 0.0002)× 105
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Denoising wavelet dictionary experiment

Clean image Noisy image

Ψ = I Ψ = DB2 Ψ = DB8Jason McEwen 22
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Denoising wavelet dictionary experiment

Prior log z RMSE (Requires ground truth)

Ψ = I −6.54× 104 41.07
Ψ = DB2 −3.06× 104 14.29
Ψ = DB8 −3.09× 104 14.51

Evidence computed by proximal nested sampling correctly compares wavelet dictionaries.
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Learned data-driven priors



Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Aim: integrate learned deep data-driven priors into proximal nested sampling.

Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).
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Proximal nested sampling with deep data driven-priors

Proximal nested sampling with data driven-priors for physical scientists
(McEwen, Liaudat, Price, Cai & Pereyra 2023; arXiv:2307.00056)

Tobias Liaudat Xiaohao CaiHenry Aldridge Marcelo PereyraMatt Price
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Tweedie’s formula

Tweedie’s formula (Robins 1956)

Consider noisy observations x ∼ N (z, σ2I) of z sampled from some underlying prior.

Tweedie’s formula gives the posterior expectation of z given x as

E(z | x) = x+ σ2∇ log p(x),

where p(x) is the marginal distribution of x.

▷ Can be interpreted as a denoising strategy.

▷ Can be used to relate a denoiser (potentially a trained deep neural network) to the
score ∇ log p(x).
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable.

⇒ Consider regularised prior defined by Gaussian smoothing:

πϵ(x) = (2πϵ)−d/2
∫

dx′ exp(−∥x− x′∥22/(2ϵ)) π(x′).

Consider learned denoiser Dϵ trained to recover x from noisy observations xϵ ∼ N (x, ϵI).

By Tweedie’s formula the score of the regualised prior related to the learned denoiser by

∇ log πϵ(x) = ϵ−1(Dϵ(x)− x).
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Proximal nested sampling with learned data-driven priors

Substituting the denoiser ∇ log πϵ(x) = ϵ−1(Dϵ(x)− x) into the proximal nested
sampling Markov chain update:

x(k+1) = x(k) − δ

2ϵ
[
x(k) − Dϵ(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .
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Hand-crafted vs data-driven priors

Consider simple radio interferometric imaging inverse problem with:
▷ hand-crafted prior based on sparsity-promoting wavelet representation;
▷ data-driven prior based on a deep convolutional neural network (Ryu et al. 2019).

0.0

0.2

0.4

0.6

0.8

1.0

Ground truth

SNR = 17.20 dB

0.0

0.2

0.4

0.6

0.8

1.0

Backprojected
(17.2dB)

SNR = 22.96 dB
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0.4

0.6

0.8

1.0

Hand-crafted prior
(23.0dB)

SNR = 24.15 dB

0.0

0.2

0.4

0.6

0.8

1.0

Data-driven prior
(24.2dB)

Which model best?
▷ SNR ⇒ data-driven priors best but require ground-truth;
▷ Bayesian evidence ⇒ data-driven priors best (no ground-truth knowledge).
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Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:
▷ hand-crafted prior based on sparsity-promoting wavelet representation;
▷ data-driven priors based on deep neural networks

(Goujon et al. 2023, Ryu et al. 2019).

Which model best?
▷ SNR ⇒ data-driven priors best but require ground-truth;
▷ Bayesian evidence ⇒ data-driven priors best (no ground-truth knowledge).

Jason McEwen 30

https://arxiv.org/abs/2211.12461
https://arxiv.org/abs/1905.05406
http://www.jasonmcewen.org


Summary



Summary

▷ Proximal nested sampling (arXiv:2106.03646) framework scales to high-dimensions,
opening up Bayesian model comparison for, e.g., imaging problems.

▷ Constrained to log-convex likelihoods, which are ubiquitous in imaging sciences.

▷ Prior not constrained to be log-convex so can be a deep neural network.

▷ Learned proximal nested sampling (arXiv:2307.00056) approach to support
data-driven priors.

▷ Future work:
■ More extensive experiments to showcase use
■ Remove convexity constraint
■ More expressive data-driven priors (e.g. denoising diffusion models)
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Extra Slides
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Alternatives to marginal likelihood

▷ Posterior predictive checks
Fine for model consistency checks
Not suitable for model comparison
■ Does not guarantee Bayesian consistency
■ Does not penalise model complexity

▷ Bayesian model complexity and
dimensionality

Only weakly dependent on prior through
posterior

▷ Bayesian leave one out (LOO) cross validation
Fine for validation
Not suitable for model comparison
■ Does not guarantee Bayesian consistency
■ Does not penalise model complexity

▷ Bayesian suspicious for testing for tensions
between datasets

Only weakly dependent on prior through
posterior
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Nested sampling: estimating enclosed prior volume stochastically

Enclosed prior volume decreases exponentially at each step: ξi+1 = ti+1ξi.

Shrinkage ratio can be estimated stochastically since E(log t) = −1/Nlive.

The enclosed prior volume can then be estimated by

ξi+1 = exp(−i/Nlive) .
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