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Harmonic analysis
°

Spherical harmonics

@ Consider the space of square integrable functions on the sphere L*(S*), with the inner
product of f, g € L*(S?) defined by

G0 = [, 420, 0)70.0) ¢ (0,6,
S
where dQ2(6, ») = sin 6 df de is the usual invariant measure on the sphere and (6, ¢) define

spherical coordinates with colatitude ¢ € [0, =] and longitude ¢ € [0, 27). Complex
conjugation is denoted by the superscript *.
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Spherical harmonics

@ Consider the space of square integrable functions on the sphere L*(S*), with the inner
product of f, g € L*(S?) defined by
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where dQ2(6, ») = sin 6 df de is the usual invariant measure on the sphere and (6, ¢) define
spherical coordinates with colatitude ¢ € [0, =] and longitude ¢ € [0, 27). Complex
conjugation is denoted by the superscript *.

@ The scalar spherical harmonic functions form the canonical orthogonal basis for the space of
L*(S?%) scalar functions on the sphere and are defined by
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for natural £ € N and integer m € Z, |m| < ¢, where P/ (x) are the associated Legendre
functions.

@ Eigenfunctions of the Laplacian on the sphere: A Ve, = —£(€ 4 1)Yy,.
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where dQ2(6, ») = sin 6 df de is the usual invariant measure on the sphere and (6, ¢) define
spherical coordinates with colatitude ¢ € [0, =] and longitude ¢ € [0, 27). Complex
conjugation is denoted by the superscript *.

@ The scalar spherical harmonic functions form the canonical orthogonal basis for the space of
L*(S?%) scalar functions on the sphere and are defined by

2041 (£ —m)! .
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Yem(0, ) =
en(6,0) ar (Lt m)!

for natural £ € N and integer m € Z, |m| < ¢, where P/ (x) are the associated Legendre
functions.

@ Eigenfunctions of the Laplacian on the sphere: A Ve, = —£(€ 4 1)Yy,.

@ Orthogonality relation: (Y, Yy, ) = 840/6,,,, Where &; is the Kronecker delta symbol.

m mm

@ Completeness relation:

oo 14
S ST Vin(8,9) Y7, (0", ¢') = S(cos 8 — cos8) 3 — ') ,
L=0m=—2¢

where 4 (x) is the Dirac delta function.
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Spherical harmonic transform

@ Any square integrable scalar function on the sphere / € L?(S?) may be represented by its
spherical harmonic expansion:

oo 14
FO.0) =D D" fom You(0, ) -
—£

@ The spherical harmonic coefficients are given by the usual projection onto each basis function:

fin = . Yew) = [, 4920, 0)£0.0) Yi(6.)

@ We consider signals on the sphere band-limited at L, that is signals such that fy,, = 0, V¢ > L
= summations may be truncated to L — 1.
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Spherical harmonic transform

@ Any square integrable scalar function on the sphere / € L?(S?) may be represented by its
spherical harmonic expansion:

oo 4
FO,0) =" > fonYeu(0,9) .

@ The spherical harmonic coefficients are given by the usual projection onto each basis function:
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@ We consider signals on the sphere band-limited at L, that is signals such that fy,, = 0, V¢ > L
= summations may be truncated to L — 1.

@ Aside: Generalise to spin functions on the sphere.
Square integrable spin functions on the sphere  f € LZ(SZ), with integer spin s € Z, |s| < ¢, are defined by
their behaviour under local rotations. By definition, a spin function transforms as

S(0,0) =eTHXf(0,9)
under a local rotation by x, where the prime denotes the rotated function.
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Spherical harmonic transform

@ Any square integrable scalar function on the sphere / € L?(S?) may be represented by its
spherical harmonic expansion:

oo 4
FO,0) =" > fonYeu(0,9) .

L=0m=—1¢

@ The spherical harmonic coefficients are given by the usual projection onto each basis function:

Som =y Yom) = /QZ dQ (0, ¢) (0, ¢) YZ”,(O, ®) -

@ We consider signals on the sphere band-limited at L, that is signals such that fy,, = 0, V¢ > L
= summations may be truncated to L — 1.

@ Aside: Generalise to spin functions on the sphere.
Square integrable spin functions on the sphere  f € LZ(SZ), with integer spin s € Z, |s| < ¢, are defined by
their behaviour under local rotations. By definition, a spin function transforms as

S(0,0) =eTHXf(0,9)
under a local rotation by x, where the prime denotes the rotated function.

@ Exact in the continuous setting but require sampling theorems on the sphere for discrete
signals.



Sampling theorems
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Driscoll & Healy sampling theorem (DH)

@ The DH sampling theorem gives an explicit quadrature rule for the spherical harmonic

transform:
2L—1 2L—1
Jen=">_ > aou(00) f (01, 0p) Y5 (01, 0)
=0 p=0
where the sample positions are defined by 0, = 7r/2L,forr =0, ..., 2L — 1, and
pp =7p/Lforp =0,...,2L — 1

=  Nou = (2L — 1)2L + 1 ~ 4L* samples on the sphere.
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Driscoll & Healy sampling theorem (DH)

@ The DH sampling theorem gives an explicit quadrature rule for the spherical harmonic

transform:
2L—1 2L—1
Jen=">_ > aou(00) f (01, 0p) Y5 (01, 0)
=0 p=0
where the sample positions are defined by 0, = 7r/2L,forr =0, ..., 2L — 1, and
pp =7p/Lforp =0,...,2L — 1

=  Nou = (2L — 1)2L + 1 ~ 4L* samples on the sphere.

@ The quadrature weights are defined implicitly by the solution to

2L—1
27
E qou (0;) Pe(cos 6,) = T deo, VE<2L,
t=0

and are given explicitly by

L—1 .
2 sin((2k 4+ 1)6,)

aon(0,) = =5 sing, > 0
L? = 2k + 1



Sampling theorems
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Driscoll & Healy sampling theorem (DH)

@ The exactness of the quadrature rule is proved by considering the sampling distribution of
Dirac delta functions defined by

2L—1 2L—1

s(0,0) = > > qou(6)) 5(cos — cos 0,) 5(p — ) -

=0 p=0
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Driscoll & Healy sampling theorem (DH)

@ The exactness of the quadrature rule is proved by considering the sampling distribution of
Dirac delta functions defined by

2L—1 2L—1

s(0,0) = > > qou(6)) 5(cos — cos 0,) 5(p — ) -

=0 p=0

@ It can be shown that so0 = V47 and s;,, = 0for0 < ¢ < 2L, Vm.

@ Thus, the sampling distribution may be written

oo £
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Driscoll & Healy sampling theorem (DH)

@ The exactness of the quadrature rule is proved by considering the sampling distribution of
Dirac delta functions defined by
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s(0,0) = > > qou(6)) 5(cos — cos 0,) 5(p — ) -
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@ It can be shown that so0 = V47 and s;,, = 0for0 < ¢ < 2L, Vm.

@ Thus, the sampling distribution may be written

oo £
$0,0) =14+ > 3" son Yeu(0, ) .

£=2L m=—1¢

@ The harmonic coefficients of the product of the original band-limited function and the sampling
distribution /* = f - s are then given by
2L—1 2L—1

Fom =2 > aou(0)£(6:, ) Y5, (01 8)

=0 p=0

@ Notice that these harmonic coefficients are given by the DH quadrature rule and it simply
remains to prove that the harmonic coefficients of /* agree with those of f for the harmonic
range of interest (i.e. for0 < ¢ < L).
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Driscoll & Healy sampling theorem (DH)

@ We may write
F(0,0) =f(0,9) +a(0,),

where
L—1 o

oo £
a(d, p) = Z Z Sem Yem (0, ) Z Z form Yorm (0,) .
£=2L m=—1L

—¢ /=0 m'=—2¢'
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Driscoll & Healy sampling theorem (DH)

@ We may write
F(0,0) =f(0,9) +a(0,),

where
o ¢ L—1 o
a(f, ) = Z Z Sem Yem (0, 0) Z Z Form Yorm (0,¢) .
£=2L m=—¢ /=0 m'=—2¢'

@ Since the product of two spherical harmonic functions Y, (0, ¢) Y,, (0, ¢) can be written as
a sum of spherical harmonics with minimum degree |¢ — ¢’|, the aliasing error o (0, ¢)
contains non-zero harmonic content for £ > L only.

@ Aliasing is therefore outside of the harmonic range of interest and f;,, = fz, for0 < £ < L,
|m| < £, thus proving the exact quadrature rule.
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Driscoll & Healy sampling theorem (DH)

@ Why 2L samples in 6? Recap...
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Driscoll & Healy sampling theorem (DH)

@ Why 2L samples in 6? Recap...

@ Stems from the implicit definition of the quadrature weights:
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@ This is essentially an exact quadrature rule for the integration of Legendre polynomials, since
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Driscoll & Healy sampling theorem (DH)

@ Why 2L samples in 6? Recap...

@ Stems from the implicit definition of the quadrature weights:

Ng—1
27
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@ This is essentially an exact quadrature rule for the integration of Legendre polynomials, since
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@ An exact quadrature rule is developed by appealing to the orthogonality of the complex
exponentials on [0, 27):

T 1 iy
2840 = / dfsin @ Py(cos0,) = = / dé sin O sgnd Py (cos 6;)
0 o

2
ey, o
= ; m ‘/71 df sin @ sin ((2k + 1)0) P (cos 6;)

Trig. poly. of max degree 2(¢ + 1)
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Driscoll & Healy sampling theorem (DH)

@ Why 2L samples in 6? Recap...

@ Stems from the implicit definition of the quadrature weights:

Ng—1
27
Z qpu(6;) Pe(cosb,) = T G0, VL<2L.

=0

@ This is essentially an exact quadrature rule for the integration of Legendre polynomials, since

/ dOsin @ Py(cos 0;) Pyr(cos0,) = ——— §ppr = dfsin O Py(cosB;) =26y -
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@ An exact quadrature rule is developed by appealing to the orthogonality of the complex
exponentials on [0, 27):

T 1 iy
2840 = / dfsin @ Py(cos0,) = = / dé sin O sgnd Py (cos 6;)
0 o

2
ey, o
= ; m ‘/71 df sin @ sin ((2k + 1)0) P (cos 6;)

Trig. poly. of max degree 2(¢ + 1)

@ Require 4L samples in 6 over 27 = 2L samples in 6 on the sphere

@ Also recover the explicit form of the quadrature weights.
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MW sampling theorem

@ MW sampling theorem follows by a factoring of rotations and then by associating the sphere
with the torus through a periodic extension.
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MW sampling theorem

@ MW sampling theorem follows by a factoring of rotations and then by associating the sphere
with the torus through a periodic extension.

@ Similar (in flavour but not detail!) to making a periodic extension in ¢ of a function f on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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MW sampling theorem

@ MW sampling theorem follows by a factoring of rotations and then by associating the sphere
with the torus through a periodic extension.

@ Similar (in flavour but not detail!) to making a periodic extension in ¢ of a function f on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus
Figure: Associating functions on the sphere and torus
@ Whereas DH perform an implicit extension of 6 to [0, 27) in developing their exact quadrature

rule, we perform an explicit extension of / to [0, 27r) but restrict the continuous integral
defining the quadrature weights to [0, ].
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MW sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ./ may be written:

L—1
20 41 ,
. s s ¢ ¢
Fow= (OIS AL AL G
m'=—(L—1)
where
~ o
Gt = / dfsin 0 G, (0) e ™
JO
and

Gn(0) = [T a0 0) e
0
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MW sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ./ may be written:

L—1
20 +1 )
. s m-s 4 £
Son= DT 3T AL AL G

m'=—(L—1)

where

" ’
sGot = / d6sin 6 ,G,,(8) e "
Jo

and "
Gn(0) = [T a0 0) e
0

@ The integral over ¢ is simply a Fourier transform, hence the orthogonality of the complex
exponentials may be exploited to evaluate this integral exactly by

L—1

27T —1my
sGu(0;) = Z f (61, ‘ﬂp) e "er )
2L — 1 =)

where ¢, = 27p/(2L — 1),forp =0,...,2L —2,and 6§, = w(2r + 1) /(2L — 1), for

(=0,...,L—1 '
=  Nuw = (L — 1)(2L — 1) + 1 ~ 2L? samples on the sphere.
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MW sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ./ may be written:

L—1
2041 ,
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Fow= (OIS AL AL G
m'=—(L—1)
where
~ o
Gt = / dfsin 0 G, (0) e ™
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@ The integral over ¢ is simply a Fourier transform, hence the orthogonality of the complex
exponentials may be exploited to evaluate this integral exactly by

2 = —im
sGm(0)) = Z f (61, ‘/’/7) e s

2L — 1
p=—(L—1)

where ¢, = 27p/(2L — 1),forp =0,...,2L —2,and 6§, = w(2r + 1) /(2L — 1), for

(=0,...,L—1 '
=  Nuw = (L — 1)(2L — 1) + 1 ~ 2L? samples on the sphere.

@ It remains to develop an exact quadrature rule to evaluate the integral over 6.
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MW sampling theorem

@ We develop an exact quadrature rule to evaluate the integral over 6 by extending ;G,,(0) to
the domain 6 € [0, 27) through the construction

. Gu(6)) ref01,...,L—1}
sGm(6r) = o )
om0 {(*')"’*‘ $Gu(Oo—2—y), t€{L,...,2L—2}

so that sG,,,((i,) may be expressed by a Fourier series.
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MW sampling theorem

@ We develop an exact quadrature rule to evaluate the integral over 6 by extending ;G,,(0) to
the domain 6 € [0, 27) through the construction
~ sGn(0:) r€{0,1,...,L—1}
sGm(0:) =
om0 {(*')"’*‘ $Gu(Oo—2—y), t€{L,...,2L—2}

)

so that sC‘,,,((i,) may be expressed by a Fourier series.

@ Substituting into the integral over 6 yields

L—1
Gt =27 S0 Fr ),
m'!=—(L—1)
where the weights are given by
. , +im/2, m' = +1
w(m') = / dosing ™ = { o, m’ odd, m’ # +1
70 2/(1 —m'*), m' even
with
L—1

1 - o
Fppt = 7= G0, 70"
SE mm? 2m(2L — 1) r:§71> s m( 1)
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@ We develop an exact quadrature rule to evaluate the integral over 6 by extending ;G,,(0) to
the domain 6 € [0, 27) through the construction
~ sGn(0:) r€{0,1,...,L—1}
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)

so that sC‘,,,((i,) may be expressed by a Fourier series.

@ Substituting into the integral over 6 yields
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where the weights are given by
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@ Since the spherical harmonic coefficients f,,, are recovered exactly, all of the information
content of the function f is captured in the finite set of samples.



Sampling theorems
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Quadrature

@ Sampling theorems effectively encode (often implicitly) an exact quadrature rule for evaluating
the integral of a band-limited function on the sphere.

@ The quadrature rule can be made explicit:

Ng—1 Np—1

/;dﬁl(esoxf&w S ST a0 S0 )

=0 p=0

where Ny, No, g € {gpu, guw } and the sample positions {6,, ¢, } depend on the chosen
sampling theorem.
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Comparison

DH DH MW
Divide-and-conquer ~ Semi-naive

Pixelisation scheme equiangular equiangular  equiangular
Asymptotic complexity O3 10g L) o) o)
Precomputation Y N N
Stability N Y Y
Flexibility of Wigner recursion N N Y
Number of samples 412 412 212
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Compressive sensing on the sphere

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing.

@ Many natural signals are sparse in measures defined in the spatial domain, such as in the
magnitude of their gradient.

@ A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

@ For a given number of measurements, a more efficient sampling theorem improves the quality
of compressive sampling reconstruction.

@ lllustrate with a total variation (TV) inpainting problem on the sphere.



Compressive Sensing
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:
@ the samples of / are denoted by the concatenated vector x € RY;

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;

°
°
°
@ the noise n € RM is assumed to be iid Gaussian with zero mean.
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of / are denoted by the concatenated vector x € R";

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;
the noise n € R is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

Ng—1 Np—1 Ng—1 Np—1
[ P [ » 612(9:)

A W@V X0 30 IVaO) = 30 30 ([0 (5ex) + o (50%)° = v -

=0 p=0 t=0  p=0




TV inpainting

Compressive Sensing
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@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of / are denoted by the concatenated vector x € R";

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;
the noise n € R is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

Ng—1 Np—1

=0

=0

Ng—1 Np—1
¢ < Clz(gr)

/57 @Ivi= X X 1900 = X X (@00 (Gex) + T (5,5)° = sl

=0  p=0

@ TV inpainting problem solved directly on the sphere:

* .
X = arg min
X

|x|ltv such that |ly — ®x|» < e.
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:
@ the samples of / are denoted by the concatenated vector x € RY;
@ N is the number of samples on the sphere of the chosen sampling theorem;
@ M noisy measurements y € R are acquired;
@ the measurement operator & € RY >V represents a random masking of the signal;
@ the noise n € RM is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

Ng—1 Np—1 Ng—1 Np—1
[ P [ » 612(9:)

foaoivi= X 3 vae) = Y X ([0 (300 + T (506)? = sl -

=0 p=0 t=0  p=0

@ TV inpainting problem solved directly on the sphere:

x* = argmin ||x||rv suchthat ||y — ®x|, < e.
x

@ TV inpainting problem solved in harmonic space:

#* = argmin ||AZ||ry suchthat ||y — ®AZ|) < e,
®

where A represents the inverse spherical harmonic transform and harmonic coefficients are
2
represented by the concatenated vector # € C-".



Compressive Sensing
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2



Compressive Sensing
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2



Compressive Sensing
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2



Compressive Sensing
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) Ground truth

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2
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TV inpainting: low-resolution simulations

40,
-4- DH spatial
a5/ -o-- MW spatial
=—§— DH harmonic
=0— MW harmonic
30+ e T
251
Z 20f
15- - ‘ . s
.
10} ¢ .
.
.
%
5L ¢
0 1 1 1 1 1 1 1 1
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M/L2

Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

@ Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

@ MW sampling more efficient, hence develop fast adjoints for this case only.



Compressive Sensing

@00

TV inpainting: high-resolution simulations

@ Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

@ MW sampling more efficient, hence develop fast adjoints for this case only.

Figure: Ground truth
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TV inpainting: high-resolution simulations

@ Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

@ Superiority of MW sampling theorem clear, hence develop fast adjoints for this case only.

Figure: Measurements (M /L* = 1/4)
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TV inpainting: high-resolution simulations

@ Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

@ Superiority of MW sampling theorem clear, hence develop fast adjoints for this case only.

Figure: MW reconstruction (M/L> = 1/4)
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Summary

@ We have developed a new sampling theorem on the sphere requiring fewer than half the
number of samples of the canonical Driscoll & Healy sampling theorem.

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing, both in terms of the
dimensionality and sparsity of signals.

@ We have demonstrated improved reconstruction quality when solving an inpainting problem in
the context of different sampling theorems.

@ We have developed fast adjoint spherical harmonic transform operators to tackle problems
with high band-limits.

Related publications

@ McEwen, J. D. and Wiaux, Y., A novel sampling theorem on the sphere, IEEE Trans.
Sig. Proc., 59(12): 5876-5887, 2011.

@ McEwen, J. D., Puy, G., Thiran, J.-P., Vandergheynst, P, Ville, D. V. D., and Wiaux, Y.,
Efficient and compressive sampling on the sphere, IEEE Trans. Sig. Proc., submitted,
2011.

V.

SSHT code

@ Code available to compute exact spin spherical harmonic transforms (SSHT) in the
context of our new sampling theorem: http://www. jasonmcewen.org/
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