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Spherical harmonics

Consider the space of square integrable functions on the sphere L2(S2), with the inner
product of f , g ∈ L2(S2) defined by

〈f , g〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) g∗(θ, ϕ) ,

where dΩ(θ, ϕ) = sin θ dθ dϕ is the usual invariant measure on the sphere and (θ, ϕ) define
spherical coordinates with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Complex
conjugation is denoted by the superscript ∗.

The scalar spherical harmonic functions form the canonical orthogonal basis for the space of
L2(S2) scalar functions on the sphere and are defined by

Y`m(θ, ϕ) =

√
2`+ 1

4π
(`− m)!

(`+ m)!
Pm
` (cos θ) eimϕ

,

for natural ` ∈ N and integer m ∈ Z, |m| ≤ `, where Pm
` (x) are the associated Legendre

functions.

Eigenfunctions of the Laplacian on the sphere: ∆S2 Y`m = −`(`+ 1)Y`m.

Orthogonality relation: 〈Y`m, Y`′m′ 〉 = δ``′δmm′ , where δij is the Kronecker delta symbol.

Completeness relation:

∞∑
`=0

∑̀
m=−`

Y`m(θ, ϕ) Y∗`m(θ
′
, ϕ
′
) = δ(cos θ − cos θ′) δ(ϕ− ϕ′) ,

where δ(x) is the Dirac delta function.
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Spherical harmonic transform

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =
∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L
⇒ summations may be truncated to L− 1.

Aside: Generalise to spin functions on the sphere.
Square integrable spin functions on the sphere sf ∈ L2(S2), with integer spin s ∈ Z, |s| ≤ `, are defined by
their behaviour under local rotations. By definition, a spin function transforms as

sf ′(θ, ϕ) = e−isχ
sf (θ, ϕ)

under a local rotation by χ, where the prime denotes the rotated function.

Exact in the continuous setting but require sampling theorems on the sphere for discrete
signals.
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Driscoll & Healy sampling theorem (DH)

The DH sampling theorem gives an explicit quadrature rule for the spherical harmonic
transform:

f`m =

2L−1∑
t=0

2L−1∑
p=0

qDH(θt) f (θt, ϕp) Y∗`m(θt, ϕp) ,

where the sample positions are defined by θt = πt/2L, for t = 0, . . . , 2L− 1, and
ϕp = πp/L, for p = 0, . . . , 2L− 1
⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

The quadrature weights are defined implicitly by the solution to

2L−1∑
t=0

qDH(θt) P`(cos θt) =
2π
L
δ`0 , ∀` < 2L ,

and are given explicitly by

qDH(θt) =
2π
L2

sin θt

L−1∑
k=0

sin((2k + 1)θt)

2k + 1
.
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Driscoll & Healy sampling theorem (DH)

The exactness of the quadrature rule is proved by considering the sampling distribution of
Dirac delta functions defined by

s(θ, ϕ) =

2L−1∑
t=0

2L−1∑
p=0

qDH(θt) δ(cos θ − cos θt) δ(ϕ− ϕp) .

It can be shown that s00 =
√

4π and s`m = 0 for 0 < ` < 2L, ∀m.

Thus, the sampling distribution may be written

s(θ, ϕ) = 1 +
∞∑
`=2L

∑̀
m=−`

s`m Y`m(θ, ϕ) .

The harmonic coefficients of the product of the original band-limited function and the sampling
distribution f s = f · s are then given by

f s
`m =

2L−1∑
t=0

2L−1∑
p=0

qDH(θt) f (θt, ϕp) Y∗`m(θt, ϕp) ,

Notice that these harmonic coefficients are given by the DH quadrature rule and it simply
remains to prove that the harmonic coefficients of f s agree with those of f for the harmonic
range of interest (i.e. for 0 ≤ ` < L).
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Driscoll & Healy sampling theorem (DH)

We may write
f s

(θ, ϕ) = f (θ, ϕ) + α(θ, ϕ) ,

where

α(θ, ϕ) =
∞∑
`=2L

∑̀
m=−`

s`m Y`m(θ, ϕ)

L−1∑
`′=0

`′∑
m′=−`′

f`′m′ Y`′m′ (θ, ϕ) .

Since the product of two spherical harmonic functions Y`m(θ, ϕ) Y`′m′ (θ, ϕ) can be written as
a sum of spherical harmonics with minimum degree |`− `′|, the aliasing error α(θ, ϕ)
contains non-zero harmonic content for ` > L only.

Aliasing is therefore outside of the harmonic range of interest and f s
`m = f`m for 0 ≤ ` < L,

|m| < `, thus proving the exact quadrature rule.
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Driscoll & Healy sampling theorem (DH)

Why 2L samples in θ? Recap. . .

Stems from the implicit definition of the quadrature weights:

Nθ−1∑
t=0

qDH(θt) P`(cos θt) =
2π
L
δ`0 , ∀` < 2L .

This is essentially an exact quadrature rule for the integration of Legendre polynomials, since∫ π

0
dθ sin θ P`(cos θt) P`′ (cos θt) =

2
2`+ 1

δ``′ ⇒
∫ π

0
dθ sin θ P`(cos θt) = 2 δ`0 .

An exact quadrature rule is developed by appealing to the orthogonality of the complex
exponentials on [0, 2π):

2 δ`0 =

∫ π

0
dθ sin θ P`(cos θt) =

1
2

∫ π

−π
dθ sin θ sgnθ P`(cos θt)

=

b`/2c∑
k=0

2
(2k + 1)π

∫ π

−π
dθ sin θ sin ((2k + 1)θ) P`(cos θt)︸ ︷︷ ︸

Trig. poly. of max degree 2(`+ 1)

Require 4L samples in θ over 2π⇒ 2L samples in θ on the sphere

Also recover the explicit form of the quadrature weights.
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MW sampling theorem

MW sampling theorem follows by a factoring of rotations and then by associating the sphere
with the torus through a periodic extension.

Similar (in flavour but not detail!) to making a periodic extension in θ of a function f on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus

Whereas DH perform an implicit extension of θ to [0, 2π) in developing their exact quadrature
rule, we perform an explicit extension of f to [0, 2π) but restrict the continuous integral
defining the quadrature weights to [0, π].
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MW sampling theorem

By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of sf may be written:

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′ ,

where

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

and

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ

.

The integral over ϕ is simply a Fourier transform, hence the orthogonality of the complex
exponentials may be exploited to evaluate this integral exactly by

sGm(θt) =
2π

2L− 1

L−1∑
p=−(L−1)

sf (θt, ϕp) e−imϕp ,

where ϕp = 2πp/(2L− 1), for p = 0, . . . , 2L− 2, and θt = π(2t + 1)/(2L− 1), for
t = 0, . . . , L− 1
⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.

It remains to develop an exact quadrature rule to evaluate the integral over θ.
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By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of sf may be written:

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′ ,

where

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

and

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ

.

The integral over ϕ is simply a Fourier transform, hence the orthogonality of the complex
exponentials may be exploited to evaluate this integral exactly by

sGm(θt) =
2π

2L− 1

L−1∑
p=−(L−1)

sf (θt, ϕp) e−imϕp ,

where ϕp = 2πp/(2L− 1), for p = 0, . . . , 2L− 2, and θt = π(2t + 1)/(2L− 1), for
t = 0, . . . , L− 1
⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.

It remains to develop an exact quadrature rule to evaluate the integral over θ.
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MW sampling theorem

We develop an exact quadrature rule to evaluate the integral over θ by extending sGm(θ) to
the domain θ ∈ [0, 2π) through the construction

sG̃m(θt) =

{
sGm(θt) , t ∈ {0, 1, . . . , L− 1}
(−1)m+s

sGm(θ2L−2−t) , t ∈ {L, . . . , 2L− 2}
,

so that sG̃m(θt) may be expressed by a Fourier series.

Substituting into the integral over θ yields

sGmm′ = 2π
L−1∑

m′′=−(L−1)

sFmm′′ w(m′′ − m′) ,

where the weights are given by

w(m′) =

∫ π

0
dθ sin θ eim′θ

=


±iπ/2, m′ = ±1
0, m′ odd, m′ 6= ±1
2/(1− m′2), m′ even

,

with

sFmm′ =
1

2π(2L− 1)

L−1∑
t=−(L−1)

sG̃m(θt) e−im′θt .

Since the spherical harmonic coefficients sf `m are recovered exactly, all of the information
content of the function sf is captured in the finite set of samples.
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Quadrature

Sampling theorems effectively encode (often implicitly) an exact quadrature rule for evaluating
the integral of a band-limited function on the sphere.

The quadrature rule can be made explicit:

∫
S2

dΩ(θ, ϕ) sf (θ, ϕ) =

Nθ−1∑
t=0

Nϕ−1∑
p=0

q(θt) sf (θt, ϕp) ,

where Nθ , Nθ , q ∈ {qDH, qMW} and the sample positions {θt, ϕp} depend on the chosen
sampling theorem.
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Comparison

DH DH MW
Divide-and-conquer Semi-naive

Pixelisation scheme equiangular equiangular equiangular

Asymptotic complexity O(L5/2 log 1/2
2 L) O(L3) O(L3)

Precomputation Y N N

Stability N Y Y

Flexibility of Wigner recursion N N Y

Number of samples 4L2 4L2 2L2
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Comparison
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Figure: Number of samples (MW=red; DH=green; GL=blue)
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Comparison
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Comparison
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Compressive sensing on the sphere

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing.

Many natural signals are sparse in measures defined in the spatial domain, such as in the
magnitude of their gradient.

A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

For a given number of measurements, a more efficient sampling theorem improves the quality
of compressive sampling reconstruction.

Illustrate with a total variation (TV) inpainting problem on the sphere.
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TV inpainting

Consider inpainting problem y = Φx + n in the context of different sampling theorems, where:
the samples of f are denoted by the concatenated vector x ∈ RN ;
N is the number of samples on the sphere of the chosen sampling theorem;
M noisy measurements y ∈ RM are acquired;
the measurement operator Φ ∈ RM×N represents a random masking of the signal;
the noise n ∈ RM is assumed to be iid Gaussian with zero mean.

Define TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV .

TV inpainting problem solved directly on the sphere:

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

TV inpainting problem solved in harmonic space:

x̂? = arg min
x̂
‖Λx̂‖TV such that ‖y− ΦΛx̂‖2 ≤ ε ,

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are

represented by the concatenated vector x̂ ∈ CL2
.
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) Ground truth

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2



Harmonic analysis Sampling theorems Compressive Sensing Summary

TV inpainting: low-resolution simulations
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Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

MW sampling more efficient, hence develop fast adjoints for this case only.

Figure: Ground truth
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TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

MW sampling more efficient, hence develop fast adjoints for this case only.

Figure: Ground truth



Harmonic analysis Sampling theorems Compressive Sensing Summary

TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

Superiority of MW sampling theorem clear, hence develop fast adjoints for this case only.

Figure: Measurements (M/L2 = 1/4)
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TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
optimisation problems.

Superiority of MW sampling theorem clear, hence develop fast adjoints for this case only.

Figure: MW reconstruction (M/L2 = 1/4)
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Summary

We have developed a new sampling theorem on the sphere requiring fewer than half the
number of samples of the canonical Driscoll & Healy sampling theorem.

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing, both in terms of the
dimensionality and sparsity of signals.

We have demonstrated improved reconstruction quality when solving an inpainting problem in
the context of different sampling theorems.

We have developed fast adjoint spherical harmonic transform operators to tackle problems
with high band-limits.

Related publications

McEwen, J. D. and Wiaux, Y., A novel sampling theorem on the sphere, IEEE Trans.
Sig. Proc., 59(12): 5876-5887, 2011.

McEwen, J. D., Puy, G., Thiran, J.-P., Vandergheynst, P., Ville, D. V. D., and Wiaux, Y.,
Efficient and compressive sampling on the sphere, IEEE Trans. Sig. Proc., submitted,
2011.

SSHT code

Code available to compute exact spin spherical harmonic transforms (SSHT) in the
context of our new sampling theorem: http://www.jasonmcewen.org/

http://www.jasonmcewen.org/
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