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Abstract

We resurrect the infamous harmonic mean estimator for computing the
marginal likelihood (Bayesian evidence) and solve its problematic large
variance. The marginal likelihood is a key component of Bayesian model
selection to evaluate model posterior probabilities; however, its com-
putation is challenging. The original harmonic mean estimator, first
proposed by Newton and Raftery in 1994, involves computing the har-
monic mean of the likelihood given samples from the posterior. It was
immediately realised that the original estimator can fail catastrophi-
cally since its variance can become very large (possibly not finite). A
number of variants of the harmonic mean estimator have been pro-
posed to address this issue although none have proven fully satisfactory.
We present the learnt harmonic mean estimator, a variant of the orig-
inal estimator that solves its large variance problem. This is achieved
by interpreting the harmonic mean estimator as importance sampling
and introducing a new target distribution. The new target distribu-
tion is learned to approximate the optimal but inaccessible target, while
minimising the variance of the resulting estimator. Since the estimator
requires samples of the posterior only, it is agnostic to the sampling
strategy used. We validate the estimator on a variety of numerical
experiments, including a number of pathological examples where the
original harmonic mean estimator fails catastrophically. We also con-
sider a cosmological application, where our approach leads to ∼ 3 to
6 times more samples than current state-of-the-art techniques in 1/3 of
the time. In all cases our learnt harmonic mean estimator is shown to
be highly accurate. The estimator is computationally scalable and can
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2 Learnt harmonic mean estimator

be applied to problems of dimension O(103) and beyond. Code imple-
menting the learnt harmonic mean estimator is made publicly available.

1 Introduction

Model selection is a critical task in order to ascertain an appropriate statis-
tical model to describe observational data. In the Bayesian formalism, model
selection requires computing the marginal likelihood, the average likelihood
of a model over its prior probability space, given observational data. The
marginal likelihood (also called the Bayesian evidence) may then be used to
compute model posterior odds and assign relative probabilities to different
models. Computing the marginal likelihood is therefore a key ingredient in
Bayesian inference. However, computing the marginal likelihood in practice
requires the evaluation of a high-dimensional integral, which is computationally
challenging.

The Bayesian formalism is one of the most common approaches to statisti-
cal inference. Consider the estimation of unknown parameters θ ∈ Θ (typically
Θ = Rd) from observed data y (typically y ∈ Rn), under a statistical model M
relating the data to the parameters. Given the data y and model M , inferences
of the parameters θ are based on their posterior distribution through Bayes’
theorem by

P(θ | y,M) =
P(y | θ,M)P(θ |M)

P(y |M)
=

L(θ)π(θ)
z

, (1)

where for model M the likelihood P(y | θ,M) specifies the probability of the
data given the parameters and P(θ |M) encodes prior information about the
parameters. The denominator P(y |M), termed the marginal likelihood or
Bayesian evidence, measures the probability of the observed data under model
M . For notational brevity we denote the likelihood by L(θ), the prior by
π(θ) and the marginal likelihood by z. We drop the explicit dependence on
the model M , except where explicitly required. For parameter inference the
marginal likelihood can be ignored (since it simply normalises the posterior)
and the shape of the posterior can be explored using Markov chain Monte Carlo
(MCMC) sampling techniques, e.g. Metropolis-Hastings sampling (Metropolis
et al, 1953; Hastings, 1970).

For Bayesian model selection it is necessary to compute the marginal
likelihood given by

z = P(y |M) =

∫
dθ P(y | θ,M)P(θ |M) =

∫
dθ L(θ)π(θ) . (2)

The marginal likelihood is of critical importance for Bayesian model selection
since it is required to compute the posterior probabilities of models. Noting
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Bayes’ theorem, the relative posterior probability of competing models M1 and
M2 is given by

P(M1 | y)
P(M2 | y)

=
P(y |M1)

P(y |M2)

P(M1)

P(M2)
. (3)

In the absence of prior information regarding model preferences it is reason-
able to take the ratio of model prior probabilities P(M1)/P(M2) to be unity.
In this case, the relative model posterior probability is given by the ratio of
marginal likelihoods for the two competing models, which is also called the
Bayes factor. In either case, computing marginal likelihoods is a critical com-
ponent to evaluating model posterior odds, which can then be used to select
the preferred model.

It is clear from (2) that evaluation of the marginal likelihood requires com-
putation of an integral with dimension d given by the number of parameters of
interest, which is typically high-dimensional. In principle, the marginal likeli-
hood could be computed simply by Monte Carlo integration of the likelihood,
given samples from the prior. While this estimator converges asymptotically to
the true marginal likelihood as the number of Monte Carlo samples increases,
in practice the accuracy of the estimator depends critically on its variance.
Since in practice the prior is typically more diffuse than the likelihood this
approach is inefficient, particularly in high and even moderate dimensional
settings (Clyde et al, 2007). Consequently, this simple estimator is usually not
effective in practice (see, e.g., Cai et al, 2021).

A variety of alternative methods have been proposed to compute the
marginal likelihood. For excellent reviews see Clyde et al (2007) and Friel and
Wyse (2012). The Savage-Dickey density ratio can be used for nested models
(Trotta, 2007). For more general models, Laplace’s method is a widely used
approach (Tierney and Kadane, 1986), which relies on the assumption that
the posterior distribution can be adequately approximated by a Gaussian dis-
tribution. This assumption often does not hold and so marginal likelihood
estimates computed by Laplace’s method may be inaccurate. Thermodynamic
integration (e.g. O’Ruanaidh and Fitzgerald 1996), which is based on MCMC
techniques, is a well-known, general approach for computing the marginal
likelihood that has been applied successfully for low-dimensional problems
(e.g. Marshall et al, 2003); however, it does require careful tuning. Annealed
importance sampling (Neal, 2001), which approximates the target distribution
using a tempering mechanism to adaptively define an importance sampling
function, is another. Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001)
is based on the outputs of a Gibbs or Metropolis-Hasting (MH) sampler
(Metropolis et al, 1953; Hastings, 1970), which poses some restrictions. Nested
sampling (Skilling, 2006) was designed specifically with the computation of the
marginal likelihood in mind, reparameterising the marginal likelihood into a
one-dimensional integral of the likelihood with respected to the enclosed prior
volume. The computational difficulty of nested sampling approaches is shifted
to sampling of the prior distribution subject to a hard constraint defined
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by likelihood level-sets. Numerous nested sampling strategies have been pro-
posed based on MCMC sampling (Skilling, 2006), ellipsoidal rejection sampling
(Feroz and Hobson, 2008; Feroz et al, 2009), slice sampling (Handley et al,
2015), diffusive sampling (Brewer et al, 2011) and proximal sampling (Cai et al,
2021). In all of the above approaches, the sampling strategy is tightly cou-
pled with the technique used to estimate the marginal likelihood. Furthermore,
while nested sampling approaches have scaled to high-dimensional settings,
notably proximal nested sampling to dimensions 106 and beyond (Cai et al,
2021), most techniques are limited to low-dimensional settings.

Ideally, the computation of the marginal likelihood would be agnostic to
the sampling strategy. If the marginal likelihood estimator required samples
from the posterior only, it could indeed then be decoupled from sampling. In
this case, the most effective sampler for the problem at hand could be consid-
ered and the posterior samples recycled to estimate the marginal likelihood.
While some techniques to compute the marginal likelihood from posterior sam-
ples have been proposed, they are generally not robust and limited to very
low dimensions. The harmonic mean estimator (Newton and Raftery, 1994)
involves computing the harmonic mean of the likelihood given samples of the
posterior generated by any MCMC technique. However, it was immediately
realised that the original estimator can fail catastrophically since its variance
can become very large and may not be finite (a thorough review and inspec-
tion of the harmonic mean estimator and variants is presented in Sec. 2). In
Heavens et al (2017) an approach based on kth nearest-neighbour distances is
proposed to compute the marginal likelihood from posterior samples, although
the technique is limited to low-dimensional settings.

In this article we present the learnt harmonic mean estimator, a variant of
the original harmonic mean estimator that solves its large variance problem.
This is achieved by interpreting the harmonic mean estimator as importance
sampling and introducing a new target distribution. The new target distri-
bution is learned to approximate the optimal but inaccessible target, while
minimising the variance of the resulting estimator. The estimator requires
samples of the posterior only and hence is agnostic to the strategy used to
generate posterior samples. Posterior samples are split to first learn the tar-
get distribution and then to second infer the marginal likelihood using the
learnt target. The resulting estimator is evaluated on a variety of numerical
experiments, including a number of pathological examples where the original
harmonic mean estimator has been shown to fail catastrophically. In all cases
our learnt harmonic mean estimator is shown to be robust and highly accurate.

The remainder of this article is structured as follows. In Sec. 2 we review
the harmonic mean estimator, its problematic source of large variance, and
variants that have been introduced in an attempt to mitigate this issue. We
present our learnt harmonic mean estimator in Sec. 3. In Sec. 4 we apply
our estimator to numerous benchmark problems where ground truth marginal
likelihood values are accessible, demonstrating in all cases that it is highly
accurate. Particular attention has been paid to the design and implementation
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of the software code implementing our learnt harmonic mean estimator so that
it can be easily applied by others to their problems of interest. We demonstrate
the ease of use of the code in Sec. 5. Concluding remarks are made in Sec. 6.

2 Review of harmonic mean estimators

Harmonic mean estimators have been the focus of considerable discussion
since first proposed by Newton and Raftery (1994). While the harmonic mean
estimator is asymptotically consistent (Newton and Raftery, 1994), it was
immediately realised that the original estimator can fail catastrophically (Neal,
1994) since its variance can become very large and may not be finite. A number
of variants of the original estimator have been proposed to address its failings
(e.g. ?Robert and Wraith, 2009; Lenk, 2009; van Haasteren, 2014), although
harmonic mean estimators have generally been considered to be ineffective
(Clyde et al, 2007; Friel and Wyse, 2012). We review the original harmonic
mean estimator and discuss why it is problematic. We then review variants
of the original estimator and how they attempt to address this failing, which
motivates the learnt harmonic mean estimator that we present in Sec. 3.

2.1 Original harmonic mean estimator

The harmonic mean estimator was first proposed by Newton and Raftery
(1994), who showed that the marginal likelihood z can be estimated from the
harmonic mean of the likelihood, given posterior samples. This follows by con-
sidering the expectation of the reciprocal of the likelihood with respect to the
posterior distribution:

ρ = EP(θ | y)

[
1

L(θ)

]
(4)

=

∫
dθ

1

L(θ)
P(θ | y) (5)

=

∫
dθ

1

L(θ)
L(θ)π(θ)

z
(6)

=
1

z
, (7)

where the final line follows since the prior π(θ) is a normalised probability dis-
tribution. This relationship between the marginal likelihood and the harmonic
mean motivates the original harmonic mean estimator :

ρ̂ =
1

N

N∑
i=1

1

L(θi)
, θi ∼ P(θ | y) , (8)

where N specifies the number of samples θi drawn from the posterior, and from
which the marginal likelihood may naively be estimated by ẑ = 1/ρ̂. For now
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we simply consider the estimation of the reciprocal of the marginal likelihood
ρ̂ (we discuss estimation of the marginal likelihood itself and Bayes factors in
more detail in Sec. 3.3).

As immediately realised by Neal (1994), this estimator can fail catastroph-
ically since its variance can become very large and may not be finite. Review
articles that consider a variety of methods to estimate the marginal likelihood
have also found that the harmonic mean estimator is not robust and can be
highly inaccurate (Clyde et al, 2007; Friel and Wyse, 2012). To understand why
the estimator can lead to extremely large variance we consider an importance
sampling interpretation of the harmonic mean estimator.

2.1.1 Importance sampling interpretation

The harmonic mean estimator can be interpreted as importance sampling.
Consider the reciprocal marginal likelihood, which may be expressed in terms
of the prior and posterior by

ρ =

∫
dθ

1

L(θ)
P(θ | y) (9)

=

∫
dθ

1

z

π(θ)

P(θ | y)
P(θ | y) . (10)

It is clear the estimator has an importance sampling interpretation where the
importance sampling target distribution is the prior π(θ), while the sampling
density is the posterior P(θ | y), in contrast to typical importance sampling
scenarios.

For importance sampling to be effective, one requires the sampling density
to have fatter tails than the target distribution, i.e. to have greater probability
mass in the tails of the distribution. Typically the prior has fatter tails than the
posterior since the posterior updates our initial understanding of the underly-
ing parameters θ that are encoded in the prior, in the presence of new data y.
For the harmonic mean estimator the importance sampling density (the pos-
terior) typically does not have fatter tails than the target (the prior) and so
importance sampling is not effective. This explains why the original harmonic
mean estimator can be problematic. A number of variants of the original har-
monic mean estimator have been introduced in an attempt to address this
issue.

2.2 Adjusted harmonic mean estimator

Lenk (2009) show that while the original harmonic mean estimator is con-
sistent, in practice it exhibits simulation pseudo-bias. Simulation pseudo-bias
arises since the posterior simulation support is a subset of the prior support.
Consequently, the prior is not sufficiently captured, which often results in an
over-estimate of the marginal likelihood.
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An adjusted harmonic mean estimator is introduced by Lenk (2009) to
correct for simulation pseudo-bias:

ρ̂ =
1

P(Λ)

1

N

N∑
i=1

1

L(θi)
, θi ∼ P(θ | y) , (11)

where P(Λ) is a pseudo-bias adjustment factor given by the prior probability
of the posterior simulation support Λ ⊂ Θ. Numerical methods to estimate
P(Λ) are proposed, however, estimating the adjustment factor accurately is
numerically challenging, particularly in high dimensions. Furthermore, while
this adjusted estimator can mitigate simulation pseudo-bias it does not elim-
inate it (Pajor et al, 2017). Alternative approaches seek to eliminate the bias
altogether.

2.3 Stabilised harmonic mean estimator

? propose an alternative approach, a stabilised harmonic mean estimator,
by introducing a variance stabilisation strategy that reduces the size of the
parameter space. While this strategy can be applied to a variety of common
hierarchical models it is not applicable in general, limiting its use.

2.4 Re-targeted harmonic mean estimator

The original harmonic mean estimator was revised by Gelfand and Dey (1994)
by introducing an arbitrary density φ(θ) to relate the reciprocal of the marginal
likelihood to the likelihood through the following expectation:

ρ = EP(θ | y)

[
φ(θ)

L(θ)π(θ)

]
(12)

=

∫
dθ

φ(θ)

L(θ)π(θ)
P(θ | y) (13)

=

∫
dθ

φ(θ)

L(θ)π(θ)
L(θ)π(θ)

z
(14)

=
1

z
, (15)

where the final line follows since the density φ(θ) must be normalised. The
above expression motivates the estimator:

ρ̂ =
1

N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ P(θ | y) . (16)

The normalised density φ(θ) can be interpreted as an alternative importance
sampling target distribution, as we will see, hence we refer to this approach
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as the re-targeted harmonic mean estimator. Note that the original harmonic
mean estimator is recovered for the target distribution φ(θ) = π(θ).

2.4.1 Importance sampling interpretation

With the introduction of the distribution φ(θ), the importance sampling
interpretation of the harmonic mean estimator reads

ρ =

∫
dθ

φ(θ)

L(θ)π(θ)
P(θ | y) (17)

=

∫
dθ

1

z

φ(θ)

P(θ | y)
P(θ | y) . (18)

It is clear that the distribution φ(θ) now plays the role of the importance
sampling target distribution. One is free to choose φ(θ), with the only con-
straint being that it is a normalised distribution. It is therefore possible to
select the target distribution φ(θ) such that it has narrower tails than the
posterior, which we recall plays the role of the importance sampling density,
thereby avoiding the problematic scenario of the original harmonic mean esti-
mator. We therefore refer to φ(θ) as the target distribution of the harmonic
mean estimator.

The question of how to develop an effective strategy to select φ(θ) for
a given problem remains, which is particularly difficult in high-dimensional
settings (Chib, 1995). Gelfand and Dey (1994) initially suggest using a mul-
tivariate Gaussian, although this approach is typically not effective since the
tails of the distribution are generally not sufficiently narrow (Chib, 1995; Clyde
et al, 2007).

2.4.2 Truncated harmonic mean estimator

A common strategy to select the target distribution is to set it to a normalised
indicator function that is supported on a region Ω of high posterior mass (so
that the target has narrower tails than the posterior):

φ(θ) =
1

VΩ
IΩ(θ) , (19)

where VΩ represents the volume encapsulated in Ω and the indicator function
IΩ(θ) = 1 if θ ∈ Ω and zero otherwise. Since the indicator function effectively
truncates the region of parameter space considered we refer to this approach
as the truncated harmonic mean estimator.

Robert and Wraith (2009) propose a target distribution that corresponds
to an indicator function with support Ω determined from the convex hull of
Monte Carlo samples within an α% highest posterior density (HPD) region. In
practice they consider an ellipsoidal region defined by HPD samples, for which
the volume can be computed analytically. van Haasteren (2014) take a similar
approach and and consider indicator functions defined over ellipsoidal regions.
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While such approaches can be effective, in general the truncated har-
monic mean estimator can be inaccurate and inefficient since each sample is
either used, with a uniform target density weight, or discarded. In scenar-
ios that exhibit thin parameter degeneracies such approaches either capture
large regions of low posterior mass, which is problematic (for reasons discussed
above in Sec. 2.4.1), or can suffer prohibitive inefficiencies as the support of
the target distribution Ω can be a very small region of the full parameter space
Θ (resulting in very few samples being retained in the marginal likelihood
computation).

The selection of appropriate target densities φ(θ) for general problems
remains an open question that is known to be difficult, particularly in high
dimensions (Chib, 1995). One may gain insight into effective strategies to
design the target density by considering the optimal target distribution.

2.4.3 Optimal importance sampling target

Consider the importance sampling target distribution given by the (nor-
malised) posterior itself:

φoptimal(θ) =
L(θ)π(θ)

z
. (20)

This estimator is optimal in the sense of having zero variance, which is clearly
apparent by substituting the target density into the re-targeted harmonic mean
estimator of (16). Each term contributing to the summation is simply 1/z,
hence the estimator ρ̂ is unbiased, with zero variance.

Recall that the target density must be normalised. Hence, the optimal esti-
mator given by the normalised posterior is not accessible in practice since it
requires the marginal likelihood – the very term we are attempting to estimate
– to be known. While the optimal estimator therefore cannot be used in prac-
tice, it can nevertheless be used to inform the construction of other estimators
based on alternative importance sampling target distributions.

3 Learnt harmonic mean estimator

It is well-known that the original harmonic mean estimator can fail catas-
trophically since the variance of the estimator may be become very large, as
discussed in detail in Sec. 2. As also discussed in Sec. 2, however, this issue
can be resolved by introducing an alternative (normalised) target distribution
φ(θ) (Gelfand and Dey, 1994), yielding what we term here the re-targeted har-
monic mean estimator. From the importance sampling interpretation of the
harmonic mean estimator, the re-targeted estimator follows by replacing the
importance sampling target of the prior π(θ) with the target φ(θ), where the
posterior P(θ | y) plays the role of the importance sampling density.

It remains to select a suitable target distribution φ(θ). On one hand, to
ensure the variance of the resulting estimator is well-behaved, the target dis-
tribution should have narrower tails that the importance sampling density,
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i.e. the target φ(θ) should have narrower tails than the posterior P(θ | y) (as
discussed in Sec. 2). On the other hand, to ensure the resulting estimator is
efficient and makes use of as many samples from the posterior as possible,
the target distribution should not be too narrow. The optimal target distribu-
tion is the normalised posterior distribution since in this case the variance of
the resulting estimator is zero (Sec. 2). However, the normalised posterior is
not accessible since it requires knowledge of the marginal likelihood, which is
precisely the term we are attempting to compute.

We propose learning the target distribution φ(θ) from samples of the pos-
terior. Samples from the posterior can be split into training and evaluation
(cf. test) sets. Machine learning (ML) techniques can then be applied to learn
an approximate model of the normalised posterior from the training samples,
with the constraint that the tails of the learnt target are narrower than the
posterior, i.e.

φ(θ)
ML≃ φoptimal(θ) =

L(θ)π(θ)
z

. (21)

We term this approach the learnt harmonic mean estimator.
We are interested not only in an estimator for the marginal likelihood

but also in an estimate of the variance of this estimator, and its variance.
Such additional estimators are useful in their own right and can also provide
valuable sanity checks that the resulting marginal likelihood estimator is well-
behaved. We present corresponding estimators for the cases of uncorrelated
and correlated samples. Harmonic mean estimators provide an estimation of
the reciprocal of the marginal likelihood. We therefore also consider estimation
of the marginal likelihood itself and its variance from the reciprocal estima-
tors. Moreover, we present expressions to also estimate the Bayes factor, and
its variance, to compare two models. Finally, we present models to learn the
normalised target distribution φ(θ) by approximating the posterior distribu-
tion, with the constraint that the target has narrower tails than the posterior,
and discuss how to train such models. Training involves constructing objective
functions that penalise models that would result in estimators with a large
variance, with appropriate regularisation.

3.1 Uncorrelated samples

MCMC algorithms that are typically used to sample the posterior distribution
result in correlated samples. By suitably thinning the MCMC chain (discard-
ing all but every tth sample), however, samples that are uncorrelated can be
obtained. In this subsection we present estimators for the reciprocal marginal
likelihood and its variance under the assumption of uncorrelated samples from
the posterior.

Consider the harmonic moments

µn = EP(θ | y)

[(
φ(θ)

L(θ)π(θ)

)n
]
, (22)
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and corresponding central moments

µ′
n = EP(θ | y)

[(
φ(θ)

L(θ)π(θ)
− EP(θ | y)

(
φ(θ)

L(θ)π(θ)

))n
]
. (23)

We make use of the following harmonic moment estimators computed from
samples of the posterior:

µ̂n =
1

N

N∑
i=1

(
φ(θi)

L(θi)π(θi)

)n

, θi ∼ P(θ | y) , (24)

which are unbiased estimators of µn, i.e. E(µ̂n) = µn. The reciprocal marginal
likelihood can then be estimated from samples of the posterior by

ρ̂ = µ̂1 =
1

N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ P(θ | y) . (25)

The mean and variance of the estimator read, respectively,

E(ρ̂) = E

[
1

N

N∑
i=1

φ(θi)

L(θi)π(θi)

]
= µ1 = ρ (26)

and

var(ρ̂) = var

[
1

N

N∑
i=1

φ(θi)

L(θi)π(θi)

]
=

1

N
(µ2 − µ2

1) . (27)

Note that the estimator is unbiased.
Recall from Sec. 2 that the optimal target is given by the normalised pos-

terior, i.e. φoptimal(θ) = L(θ)π(θ)/z. It is straightforward to see that in this
case

µn = µ̂n =
1

zn
, (28)

and thus the target distribution is optimal since

var(ρ̂) =
1

N
(µ2 − µ2

1) =
1

N
(1/z2 − (1/z)2) = 0 . (29)

We are interested in not only an estimate of the reciprocal marginal likeli-
hood but also its variance var(ρ̂). It is clear from (27) that a suitable estimator
of the variance is given by

σ̂2 =
1

N − 1
(µ̂2 − µ̂2

1) =
1

N(N − 1)

N∑
i=1

(
φ(θi)

L(θi)π(θi)

)2

− ρ̂2

N − 1
. (30)
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It follows that this estimator of the variance is unbiased since

E(σ̂2) =
1

N
(µ2 − µ2

1) = var(ρ̂) . (31)

The variance of the estimator σ̂2 reads

var(σ̂2) =
1

(N − 1)2

[
(N − 1)2

N3
µ′
4 −

(N − 1)(N − 3)

N3
µ′
2
2

]
, (32)

where µ′
n are central moments, which follows by a well-known result for the

variance of a sample variance (e.g. Rose and Smith, 2002, p. 264). An unbiased
estimator of var(σ̂2) can be constructed from h-statistics (e.g. Rose and Smith,
2002), which provide unbiased estimators of central moments.

While we have presented general estimators for uncorrelated samples here,
generating uncorrelated samples requires thinning the MCMC chain, which is
highly inefficient. It is generally recognised that thinning should be avoided
when possible since it reduces the precision with which summaries of the
MCMC chain can be computed (Link and Eaton, 2012). Subsequently, we con-
sider estimators that do not require uncorrelated samples and so can make use
of considerably more MCMC samples of the posterior.

3.2 Correlated samples

We present an estimator of the reciprocal marginal likelihood, an estimate of
the variance of this estimator, and its variance. These estimators make use
of correlated samples in order to avoid the loss of efficiency that results from
thinning an MCMC chain.

We propose running a number of independent MCMC chains and using all
of the correlated samples within a given chain. A number of modern MCMC
sampling techniques, such as affine invariance ensemble samplers (Goodman
and Weare, 2010), naturally provide samples from multiple chains by their
ensemble nature. Moreover, excellent software implementations are readily
available, such as the emcee code1 (Foreman-Mackey et al, 2013), which pro-
vides an implementation of the affine invariance ensemble samplers proposed
by Goodman and Weare (2010). Alternatively, if only a single large chain is
available then this can be broken into separate blocks, which are (approxi-
mately) independent for a suitably long block length. Subsequently, we use the
terminology chains throughout to refer to both scenarios of running multiple
MCMC chains or separating a single chain in blocks.

Consider C chains of samples, indexed by j = 1, 2, . . . , C, with chain j
containing Nj samples. The ith sample of chain j is denoted θij . Since the
chain of interest is typically clear from the context, for notational brevity we
drop the chain index from the samples, i.e. we denote samples by θi where the
chain of interest is inferred from the context.

1https://emcee.readthedocs.io/en/stable/

https://emcee.readthedocs.io/en/stable/


Learnt harmonic mean estimator 13

An estimator of the reciprocal marginal likelihood can be computed from
each independent chain by

ρ̂j =
1

Nj

Nj∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ P(θ | y) . (33)

A single estimator of the reciprocal marginal likelihood can then be constructed
from the estimator for each chain by

ρ̂ =

∑C
j=1 wj ρ̂j∑C
j=1 wj

, (34)

where the estimator ρ̂j of chain j is weighted by the number of samples in
the chain, i.e. wj = Nj . It is straightforward to see that the estimator of the
reciprocal marginal likelihood is unbiased, i.e. E(ρ̂) = ρ, since E(ρ̂j) = ρ.

The variance of the estimator ρ̂ is related to the population variance σ2 =
E
[
(ρ̂i − E(ρ̂i))2

]
by

var(ρ̂) =
σ2

Neff
, (35)

where the effective sample size is given by

Neff =

(∑C
j wj

)2∑C
j w2

j

. (36)

The estimator of the population variance, given by

ŝ2 =
Neff

Neff − 1

∑C
j=1 wj(ρ̂j − ρ̂)2∑C

j wj

, (37)

is unbiased, i.e. E(ŝ2) = σ2. A suitable estimator for var(ρ̂) is thus

σ̂2 =
ŝ2

Neff
=

1

Neff − 1

∑C
j=1 wj(ρ̂j − ρ̂)2∑C

j wj

, (38)

which is unbiased, i.e. E(σ̂2) = var(ρ̂), since ŝ2 is unbiased.
The variance of the estimator σ̂2 reads

var(σ̂2) =
1

Neff
2
var(ŝ2) =

σ4

Neff
3

(
κ− 1 +

2

Neff − 1

)
, (39)

where in the second equality we have used a well-known result for the vari-
ance of the sample variance of independent and identically distributed (i.i.d.)
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random variables (e.g. Cho et al, 2005). The kurtosis κ is defined by

κ = kur(ρ̂i) = E

[(
ρ̂i − ρ

σ

)4
]
. (40)

A suitable estimator for var(σ̂2) is thus

ν̂4 =
ŝ4

Neff
3

(
κ̂− 1 +

2

Neff − 1

)
=

σ̂4

Neff

(
κ̂− 1 +

2

Neff − 1

)
, (41)

where for the kurtosis we adopt the estimator

κ̂ =

∑C
j=1 wj(ρ̂j − ρ̂)4

ŝ4
∑C

j=1 wj

=

∑C
j=1 wj(ρ̂j − ρ̂)4

Neff
2σ̂4

∑C
j=1 wj

(42)

(although alternative estimators of the kurtosis may by considered).
The estimators ρ̂, σ̂2 and ν̂4 provide a strategy to estimate the reciprocal

marginal likelihood, its variance, and the variance of the variance, respec-
tively. The variance estimators provide valuable measures of the accuracy of
the estimated reciprocal marginal likelihood and provide useful sanity checks.

Additional sanity checks can also be considered. By the central limit
theorem, for a large number of samples the distribution of ρ̂j approaches a
Gaussian, with kurtosis κ = 3. If the estimated kurtosis κ̂ ≫ 3 it would indicate
that the sampled distribution of ρ̂j has long tails, suggesting further samples
need to be drawn. Similarly, the ratio of ν̂2/σ̂2 can be inspected to see if it is
close to that expected for a Gaussian distribution with κ = 3 of

ν̂4

σ̂4
=

1

Neff

(
2 +

2

Neff − 1

)
=

2

Neff − 1
, (43)

or equivalently
ν̂2

σ̂2
=

√
2

Neff − 1
. (44)

For the common setting where the number of samples per chain is constant,
i.e. Nj = N for all j,

Neff =

(∑C
j wj

)2∑C
j w2

j

=
(NC)2

N2C
= C (45)

and, say C = 100, we find
ν̂2

σ̂2
= 0.14 . (46)

In this setting significantly larger values of this ratio would suggest that further
samples need to be drawn.
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3.3 Bayes factors

We have so far considered the estimation of the reciprocal marginal likelihood
and related variances only. However it is the marginal likelihood itself (not
its reciprocal), or the Bayes factors computed to compare two models, that
is typically of direct interest. We therefore consider how to compute these
quantities of interest and a measure of their variance.

First, consider the mean and variance of the function f(X,Y ) = X/Y of
two uncorrelated random variables X and Y , which by Taylor expansion to
second order are given by

E
(
X

Y

)
≃ E(X)

E(Y )
+

E(X)

E(Y )3
σ2
Y (47)

and

var

(
X

Y

)
≃ 1

E(Y )2
σ2
X +

E(X)2

E(Y )4
σ2
Y , (48)

respectively, where σX = E
[
(X − E(X))2

]
and σY = E

[
(Y − E(Y ))2

]
.

Using this result the marginal likelihood and its variance can be estimated
from the reciprocal estimators by making use of the relations

E(z) = E
(
1

ρ

)
≃ 1

E(ρ)

(
1 +

σ2
ρ

E(ρ)2

)
(49)

and

var

(
1

ρ

)
≃

σ2
ρ

E(ρ)4
, (50)

respectively, by considering the case X = 1 and Y = ρ.
Typically it is the Bayes factor given by the ratio of marginal likelihoods

that is of most interest in order to compare models. Again using the expressions
above for the mean and variance of the function f(X,Y ) = X/Y , this time for
the caseX = ρ2 and Y = ρ1, the Bayes factor and its variance can be estimated
directly from the reciprocal marginal likelihood estimates and variances by
making use of the relations

E
(
z1
z2

)
= E

(
ρ2
ρ1

)
≃ E(ρ2)

E(ρ1)

(
1 +

σ2
ρ1

E(ρ1)2

)
(51)

and

var

(
z1
z2

)
= var

(
ρ2
ρ1

)
≃

E(ρ1)2σ2
ρ2

+ E(ρ2)2σ2
ρ1

E(ρ1)4
, (52)

respectively.
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3.4 Learning the target density

While we have described estimators to compute the marginal likelihood and
Bayes factors based on a learnt target distribution φ(θ), we have yet to con-
sider the critical task of learning the target distribution. As discussed, the ideal
target distribution is the posterior itself. However, since the target must be
normalised, use of the posterior would require knowledge of the marginal like-
lihood – precisely the quantity that we attempting to estimate. Instead, one
can learn an approximation of the posterior that is normalised. The approxi-
mation itself does not need to be highly accurate. More critically, the learned
target approximating the posterior must exhibit narrower tails than the pos-
terior to avoid the problematic scenario of the original harmonic mean that
can result in very large variance.

We present three examples of models that can be used to learn appropri-
ate target distributions and discuss how to train them, although other models
can of course be considered. Samples of the posterior are split into training
and evaluation (cf. test) sets. The training set is used to learn the target dis-
tribution, after which the evaluation set, combined with the learnt target, is
used to estimate the marginal likelihood. To train the models we typically
construct and solve an optimisation problem to minimise the variance of the
estimator, while ensuring it is unbiased. We typically solve the resulting opti-
misation problem by stochastic gradient descent. To set hyperparameters, we
advocate cross-validation.

3.4.1 Hypersphere

The simplest model one may wish to consider is a hypersphere, much like
the truncated harmonic mean estimator. However, here we learn the optimal
radius of the hypersphere, rather than setting the radius based on arbitrary
level-sets of the posterior as considered previously.

Consider the target distribution defined by the normalised hypersphere

φ(θ) =
1

VS
IS(θ) , (53)

where the indicator function IS(θ) is unity if θ is within a hypersphere of
radius R, centred on θ̄ with covariance Σ, i.e.

IS(θ) =

{
1,

(
θ − θ̄

)T
Σ−1

(
θ − θ̄

)
< R2

0, otherwise
. (54)

The values of θ̄ and Σ can be computed directly from the training samples.
Often, although not always, a diagonal approximation of Σ is considered for
computational efficiency. The volume of the hypersphere required to normalise
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the distribution is given by

VS =
πd/2

Γ(d/2 + 1)
Rd |Σ|1/2 . (55)

Recall that d is the dimension of the parameter space, i.e. θ ∈ Rd, and note
that Γ(·) is the Gamma function.

To estimate the radius of the hypersphere we pose the following optimisa-
tion problem to minimise the variance of the learnt harmonic mean estimator,
while also constraining it be be unbiased:

min
R

σ̂2 s.t. ρ̂ = µ̂1 . (56)

By minimising the variance of the estimator we ensure, on one hand, that
the tails of the learnt target are not so wide that they are broader than the
posterior, and, on the other hand, that they are not so narrow that very few
samples are effectively retained in the estimator. This optimisation problem is
equivalent to minimising the estimator of the second harmonic moment:

min
R

µ̂2 . (57)

Writing out the cost function explicitly in terms of the posterior samples, the
optimisation problem reads

min
R

∑
i

C2
i , (58)

with costs for each sample given by

Ci =
φ(θi)

L(θi)π(θi)
∝

{
1

L(θi)π(θi)Rd ,
(
θ − θ̄

)T
Σ−1

(
θ − θ̄

)
< R2

0, otherwise
. (59)

This one-dimensional optimisation problem can be solved by straightforward
techniques, such as the Brent hybrid root-finding algorithm.

While the learnt hypersphere model is very simple, it is good pedagogical
illustration of the general procedure for learning target distributions. First,
construct a normalised model. Second, train the model to learn its parameters
by solving an optimisation problem to minimise the variance of the estimator
while ensuring it is unbiased. If required, set hyperparameters or compare
alternative models by cross-validation. While the simple learnt hypersphere
model may be sufficient in some settings, it is not effective for multimodal
posterior distributions or for posteriors with narrow curving degeneracies. For
such scenarios we consider alternative learnt models.
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3.4.2 Modified Gaussian mixture model

A modified Gaussian mixture model provides greater flexibility that the simple
hypersphere model. In particular, it is much more effective for multimodal
posterior distributions.

Consider the target distribution defined by the modified Gaussian mixture
model

φ(θ) =

K∑
k=1

wk

(2π)d/2|Σk|1/2sdk
exp

(−
(
θ − θ̄k

)T
Σ−1

k

(
θ − θ̄k

)
2s2k

)
, (60)

for K components, with centres θ̄k and covariances Σk, where the relative scale
of each component is controlled by sk and the weights are specified by

wk =
exp(zk)∑K

k′=1 exp(zk′)
, (61)

which in turn depend on the weights zk. Given K, the posterior training sam-
ples can be clustered by K-means. The values of θ̄k and Σk can then be
computed by the samples in cluster k. The model is modified relative to the
usual Gaussian mixture model in that the cluster mean and covariance are
estimated from the samples of each cluster, while the relative cluster scale and
weights are fitted. Moreover, as before, a bespoke training approach is adopted
tailored to the problem of learning an effective model for the learnt harmonic
mean estimator.

To estimate the the weights zk, which in turn define the weights wk, and
the relative scales sk we again construct an optimisation problem to minimise
the variance of the learnt harmonic mean estimator, while also constraining it
to be unbiased. We also regularise the relative scale parameters, resulting in
the following optimisation problem:

min
{zk,sk}K

k=1

σ̂2 +
1

2
λ

K∑
k=1

s2k s.t. ρ̂ = µ̂1 , (62)

for regularisation parameter λ. The problem may equivalently be written as

min
{zk,sk}K

k=1

µ̂2 +
1

2
λ

K∑
k=1

s2k , (63)

or explicitly in terms of the posterior samples by

min
{zk,sk}K

k=1

∑
i

C2
i +

1

2
λ

K∑
k=1

s2k . (64)
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The individual cost terms for each sample i are given by

Ci =
φ(θi)

L(θi)π(θi)
=

K∑
k=1

Cik , (65)

which include the following component from cluster k:

Cik =
wk

(2π)d/2|Σk|1/2sdk
exp

(−
(
θi − θ̄k

)T
Σ−1

k

(
θi − θ̄k

)
2s2k

)
1

L(θi)π(θi)
. (66)

We solve this optimisation problem by stochastic gradient decent, which
requires the gradients of the objective function. Denoting the total cost of the
objective function by C =

∑
i C

2
i + 1

2λ
∑K

k=1 s
2
k, it is straightforward to show

that the gradients of the cost function with respective to the weights zk and
relative scales sk are given by

∂C

∂zk
= 2

∑
i

Ci(Cik − wkCi) (67)

and
∂C

∂sk
= 2

∑
i

CiCik

s3k

((
θi − θ̄k

)T
Σ−1

k

(
θi − θ̄k

)
− ds2k

)
, (68)

respectively.
The general procedure to learn the target distribution is the same as before:

first, construct a normalised model; second, train the model by solving an opti-
misation problem to minimise the variance of the resulting learnt harmonic
mean estimator. In this case we regularise the relative scale parameters and
then solve by stochastic gradient descent. The number of clusters K can be
deteremined by cross-validation (or other methods). While the modified Gaus-
sian mixture model can effectively handle multimodal distributions, alternative
models are better suited to narrow curving posterior degeneracies.

3.4.3 Kernel density estimation

Kernel density estimation (KDE) provides another alternative model to learn
an effective target distribution. In particular, it can be used to effectively model
narrow curving posterior degeneracies.

Consider the target distribution defined by the kernel density function

φ(θ) =
1

N

∑
i

1

VK
K(θ − θi) , (69)

with kernel

K(θ) = k

(
θTΣ−1

K θ

R2

)
, (70)
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where k(θ) = 1 if |θ| < 1/2 and 0 otherwise. The volume of the kernel is given
by

VK =
πd/2

Γ(d/2 + 1)
Rd|ΣK |1/2 . (71)

The kernel covariance ΣK can be computed directly from the training samples,
for example by estimating the covariance or even simply by the separa-
tion between the lowest and highest samples in each dimension. A diagonal
representation is often, although not always, considered for computational
efficiency.

The kernel radius R can be estimating by following a similar procedure
to those outlined above for the hypersphere and modified Gaussian mixture
model to minimise the variance of the resulting estimator. Alternatively, since
there is only a single parameter cross-validation is also effective.

4 Numerical experiments

We perform numerous numerical experiments to validate the learnt harmonic
mean estimator by comparing to ground truth marginal likelihood values for
a variety of example problems. The techniques presented in Sec. 3 are imple-
mented in the harmonic software package2, which is discussed further in Sec. 5.
Throughout we use harmonic with the emcee code3 (Foreman-Mackey et al,
2013) to perform MCMC sampling. We consider problems with narrow curving
posterior degeneracies, multimodal distributions, and scenarios where the orig-
inal harmonic mean estimator has been shown to fail catastrophically, while
applying all three of the strategies to learn the target density φ(θ) that are
discussed in Sec. 3.4. In all cases the learnt harmonic mean estimator is shown
to be robust and highly accurate.

4.1 Rosenbrock

A common benchmark problem to test methods to compute the marginal like-
lihood is a likelihood specified by the Rosenbrock function. The Rosenbrock
function exhibits a narrow curving degeneracy, which makes it challenging to
explore the resulting posterior sufficiently to evaluate the marginal likelihood
accurately.

The Rosenbrock function is given by

f(x) =

d−1∑
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
, (72)

where d denotes dimension. Due to its very narrow curving degeneracy, it can
be difficult to numerically estimate the minimum of the Rosenbrock function,
which can be seen analytically is given by f(xmin) = 0 at xmin = (1, . . . , 1).

2https://github.com/astro-informatics/harmonic
3https://emcee.readthedocs.io/en/stable/

https://github.com/astro-informatics/harmonic
https://emcee.readthedocs.io/en/stable/
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Fig. 1 Rosenbrock posterior recovered by MCMC sampling using emcee. The Rosenbrock
function exhibits a narrow curving degeneracy, which makes it challenging to explore the
resulting posterior sufficiently to evaluate the marginal likelihood accurately.

We consider a log-likelihood given by logL(x) = −f(x) and consider a simple
uniform prior with x0 ∈ [−10, 10] and x1 ∈ [−5, 15].

We compute the marginal likelihood for dimension d = 2 using the learnt
harmonic mean estimator and by brute force to provide a ground truth for com-
parison, evaluating the marginal likelihood by numerical integration (which
is possible in this low-dimensional setting). For our learnt harmonic mean
estimator, computed using harmonic, we sample the resulting posterior dis-
tribution using emcee, drawing 5,000 samples for 200 chains, with burn in of
2,000 samples, yielding 3,000 posterior samples per chain. The recovered pos-
terior distribution is illustrated in Fig. 1. We use 50% of the samples to fit
a KDE model for the target distribution (recall that the KDE model is well-
suited to problems with narrow curving degeneracies), using cross-validation
to estimate the model hyperparameters. The remaining 50% of posterior sam-
ples are used to infer the marginal likelihood. Computation time is about one
minute to compute on a standard laptop, including drawing all samples and
performing cross-validation. We repeat this experiment 100 times in order to
estimate the variance of the estimator and its variance, in order to compare
to the variance and variance-of-variance estimators described in Sec. 3.2.

The distribution of marginal likelihood values compute by our learnt
harmonic mean estimator for all 100 experiments are shown in Fig. 2. In addi-
tion, we show the values computed by the variance and variance-of-variance
estimators (estimated) and compare them to the corresponding statistics mea-
sured from the 100 experiments (measured). Moreover, we plot the ground
truth value computed by numerical integration. The marginal likelihood value
computed is in close agreement with the ground truth and the variance
and variance-of-variance estimators are in close agreement with the values
computed from the experiments. It is clear that the learnt harmonic mean esti-
mator is highly accurate, its variance is well-behaved and its error estimators
are also highly accurate.
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(a) Inverse evidence (b) Variance of inverse evidence

Fig. 2 Marginal likelihood (evidence) computed by the learnt harmonic mean estimator
(using harmonic) for the Rosenbrock benchmark problem. 100 experiments are repeated to
recover empirical estimates of the statistics of the estimator. In panel (a) the distribution of
marginal likelihood values computed by the learnt harmonic mean estimator are shown, with
the mean and standard deviation of the distribution also shown (measured). For compari-
son the estimate of the standard deviation computed by the error estimator is also shown
(estimated). The ground truth estimated by numerical integration is indicated by the red
dashed line. In panel (b) the distribution of the variance estimator is shown, with its mean
and standard deviation (estimated). For comparison the standard deviation computed by
the variance-of-variance estimator is also shown (estimated). The learnt harmonic mean esti-
mator and its error estimators are highly accurate.

4.2 Rastrigin

Another common benchmark problem to test marginal likelihood estimators is
a likelihood specified by the Rastrigin function. The Rastrigin function exhibits
multiple local peaks, which makes it challenging to explore the resulting
posterior sufficiently to evaluate the marginal likelihood accurately.

The Rastrigin function is given by

f(x) = 10d+

d∑
i=1

[
x2
i − 10 cos(2πxi)

]
, (73)

where d denotes dimension. Due to its highly multimodal behaviour, it can
be difficult to numerically estimate the minimum of the Rastrigin function.
Its local minima are given by integer coordinate values, with the global mini-
mum at xmin = 0. We consider a log-likelihood given by logL(x) = −f(x) and
consider a simple uniform prior with xi ∈ [−6, 6] for i = 1, . . . , d.

We compute the marginal likelihood for dimension d = 2 in an identical
manner as for the Rosenbrock example, that is, using the learnt harmonic mean
estimator and by brute force to provide a ground truth for comparison, evaluat-
ing the marginal likelihood by numerical integration (which, again, is possible
in this low-dimensional setting). For our learnt harmonic mean estimator, com-
puted using harmonic, we sample the resulting posterior distribution using
emcee, drawing 5,000 samples for 200 chains, with burn in of 2,000 samples,
yielding 3,000 posterior samples per chain. The recovered posterior distribution
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Fig. 3 Rastrigin posterior recovered by MCMC sampling using emcee. The Rastrigin func-
tion exhibits multiple local peaks, which makes it challenging to explore the resulting
posterior sufficiently to evaluate the marginal likelihood accurately.

is illustrated in Fig. 3. We again adopt a KDE model for the target distribu-
tion, avoiding the need to estimate the number of modes in the distribution,
and use 50% of the samples to fit the model, using cross-validation to estimate
the model hyperparameters. The remaining 50% of posterior samples are used
to infer the marginal likelihood. Computation time is about one minute to
compute on a standard laptop, including drawing all samples and performing
cross-validation. We again repeat this experiment 100 times in order to esti-
mate the variance of the estimator and its variance, in order to compare to
the variance and variance-of-variance estimators.

The distribution of marginal likelihood values computed by our learnt har-
monic mean estimator for all 100 experiments are shown in Fig. 4. As before,
we also show the values computed by the variance and variance-of-variance
estimators (estimated) and compare them to the corresponding statistics mea-
sured from the 100 experiments (measured). Moreover, we plot the ground
truth value computed by numerical integration. It is again clear that the learnt
harmonic mean estimator is highly accurate, its variance is well-behaved and
its error estimators are also highly accurate.

4.3 Normal-Gamma

An analytically tractable numerical example is considered in Friel and Wyse
(2012) to assess the sensitivity of marginal likelihood estimators to changes
in the prior. In this study Friel and Wyse (2012) found that the marginal
likelihood values computed by the original harmonic mean estimator do not
vary with the prior as the values computed analytically do, highlighting this
example as a pathological failure of the original harmonic mean estimator. We
consider the same pathological example here and demonstrate that our learnt
harmonic mean estimator is highly accurate.
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(a) Inverse evidence 1/z (b) Variance on inverse evidence var(1/z)

Fig. 4 Marginal likelihood (evidence) computed by the learnt harmonic mean estimator
(using harmonic) for the Rastrigin benchmark problem (as in Fig. 2). 100 experiments are
repeated to recover empirical estimates of the statistics of the estimator. In panel (a) the
distribution of marginal likelihood values computed by the learnt harmonic mean estimator
are shown, with the mean and standard deviation of the distribution also shown (measured).
For comparison the estimate of the standard deviation computed by the error estimator is
also shown (estimated). The ground truth estimated by numerical integration is indicated by
the red dashed line. In panel (b) the distribution of the variance estimator is shown, with its
mean and standard deviation (estimated). For comparison the standard deviation computed
by the variance-of-variance estimator is also shown (estimated). The learnt harmonic mean
estimator and its error estimators are highly accurate.

We consider the Normal-Gamma model (Bernardo and Smith, 1994) with
data

yi ∼ N(µ, τ−1) , (74)

for i ∈ {1, . . . , n}, with mean µ and precision (inverse variance) τ . A normal
prior is assumed for µ and a Gamma prior for τ :

µ ∼ N
(
µ0, (τ0τ)

−1
)
, (75)

τ ∼ Ga(a0, b0) , (76)

with mean µ0 = 0, shape a0 = 10−3 and rate b0 = 10−3. The precision scale
factor τ0 is varied to observe the impact of changing prior on the computed
marginal likelihood. The joint prior for (µ, τ) then reads:

π(µ, τ) = π(µ | τ)π(τ) (77)

=
ba0
0

√
τ0

Γ(a0)
√
2π

τa0−1/2exp(−b0τ)exp
(
−τ0τ(µ− µ0)

2/2
)
. (78)
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yi

N Normal

τ

a0 b0

G Gamma
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µ0 τ0
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i ∈ {1, ..., n}

Fig. 5 Graphical representation of the Normal-Gamma model.

The likelihood is given by

L(y) =
n∏

i=1

P(yi |µ, τ) (79)

=

n∏
i=1

√
τ

2π
exp

(
−τ

2
(yi − µ)2

)
(80)

=
( τ

2π

)n/2

exp

(
−τ

2

n∑
i=1

(yi − µ)2
)

(81)

=
( τ

2π

)n/2

exp
(
−τn

2

(
s2 + (ȳ − µ)2

))
, (82)

where y = (y1, . . . , yn)
T,

ȳ =
1

n

n∑
i=1

yi (83)

and

s2 =
1

n

n∑
i=1

(yi − ȳ)2 . (84)

A graphical representation of the Normal-Gamma model is illustrated in Fig. 5.
For the Normal-Gamma model the marginal likelihood may be computed

analytically by

z = (2π)−n/2Γ(an)

Γ(a0)

ba0
0

ban
n

(
τ0
τn

)1/2

, (85)

where
τn = τ0 + n , (86)

an = a0 + n/2 (87)
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Table 1 Marginal likelihood values computed analytically and by the learnt harmonic
mean estimator for the Normal-Gamma example. While the original harmonic mean
estimator fails catastrophically, our learnt harmonic mean estimator is highly accurate.

τ0 10−4 10−3 10−2 10−1 100

Analytic log(z) -144.5530 -143.4017 -142.2505 -141.0999 -139.9552
Estimated log(ẑ) -144.5545 -143.3990 -142.2490 -141.1001 -139.9558
Error -0.0015 0.0027 0.0015 -0.0011 -0.0006
(learnt harmonic mean)

Error 12.2100 — 9.7900 8.5000 7.1000
(original harmonic mean)

and

bn = b0 +
1

2

n∑
i=1

(yi − ȳ)2 +
τ0n(ȳ − µ0)

2

2(τ0 + n)
(88)

= b0 +
1

2
ns2 +

τ0n(ȳ − µ0)
2

2(τ0 + n)
. (89)

To assess the impact of altering the prior, we compute the marginal like-
lihood both analytically and using our learnt harmonic mean estimator for
priors corresponding to τ0 ∈ {10−4, 10−3, 10−2, 10−1, 100}. Data are simulated
with underlying parameters (µ, τ) = (0, 1) to generate n = 100 synthetic obser-
vations (the same experimental configuration considered by Friel and Wyse
2012).

For our learnt harmonic mean estimator we use emcee to draw 1,500 sam-
ples for 200 chains, with burn in of 500 samples, yielding 1,000 posterior
samples per chain. We use 25% of the samples to learn the target model, using
cross-validation to select between the hypersphere and modified Gaussian mix-
ture model. In all cases the modified Gaussian mixture model is selected. The
remaining 75% of posterior samples are used for inferring the marginal likeli-
hood. Computation time is about one minute on a standard laptop for each
experiment (i.e. each τ0) considered, including drawing all samples.

The marginal likelihood values computed analytically and using our learnt
harmonic mean estimator are shown in Table 1 for different priors as τ0 is
varied. For comparison, the errors between the analytic values and those esti-
mated by our learnt harmonic mean estimator and the original harmonic mean
estimator are also shown. Notice that the marginal likelihood values computed
by the learnt harmonic mean estimator are highly accurate and do indeed vary
with differing priors, in contrast to results computed by the original harmonic
mean estimator (Friel and Wyse, 2012). The improvement in accuracy between
the original and our learnt harmonic mean estimation is approximately four
orders of magnitude in log space. In addition, to graphically compare the
marginal likelihood values estimated by the learnt harmonic mean estimator
to the analytic values, we plot in Fig. 6 the ratio of the estimated and analytic
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Fig. 6 Ratio of marginal likelihood values computed by the learnt harmonic mean esti-
mator to those computed analytically. Errors bars corresponding to the estimated standard
deviation of the learnt harmonic estimator are also shown. Notice that the marginal likeli-
hood values computed by the learnt harmonic mean estimator are highly accurate and are
indeed sensitive to changes in the prior.

values, with the uncertainties computed by our learnt harmonic mean estima-
tor overlaid. It is clear that the marginal likelihood values computed by the
learnt harmonic mean estimator closely estimate the analytic values and that
the uncertainties are reasonable.

4.4 Logistic regression models: Pima Indian example

We consider the comparison of two logistic regression models using the Pima
Indians data, which is another common benchmark problem for comparing
estimators of the marginal likelihood. The original harmonic mean estimator
has been shown to fail catastrophically for this example (Friel and Wyse,
2012), whereas we show here that our learnt harmonic mean estimator is highly
accurate.

The Pima Indians data (Smith et al, 1988), originally from the National
Institute of Diabetes and Digestive and Kidney Diseases, were compiled from
a study of indicators of diabetes in n = 532 Pima Indian women aged 21 or
over. Seven primary predictors of diabetes were recorded, including: number of
prior pregnancies (NP); plasma glucose concentration (PGC); diastolic blood
pressure (BP); triceps skin fold thickness (TST); body mass index (BMI);
diabetes pedigree function (DP); and age (AGE).

The probability of diabetes pi for person i ∈ {1, . . . , n} can be modelled
by the standard logistic function

pi =
1

1 + exp
(
−θTxi

) , (90)

with covariates xi = (1, xi,1, . . . xi,d)
T and parameters θ = (θ0, . . . , θd)

T, where
d is the total number of covariates considered. The likelihood function then
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τ

i ∈ {1, ..., n}

Fig. 7 Graphical representation of logistic regression Model 2 for modelling diabetes in
Pima Indians. Model 1 is similar but does not include the AGE covariate.

reads

L(y | θ) =
n∏

i=1

pyi

i (1− pi)
1−yi , (91)

where y = (y1, . . . , yn)
T is the diabetes incidence, i.e. yi is unity if patient i

has diabetes and zero otherwise. An independent multivariate Gaussian prior
is assumed for the parameters θ, given by

π(θ) =
( τ

2π

)d/2

exp
(
−τ

2
θTθ

)
, (92)

with precision τ .
Two different logistic regression models are considered, with different

subsets of covariates:

Model M1 : covariates = {NP, PGC, BMI, DP} (and bias);

Model M2 : covariates = {NP, PGC, BMI, DP, AGE} (and bias).

A graphical representation of Model 2 is illustrated in Fig. 7 (Model 1 is similar
but does not include the AGE covariate).

We compute the marginal likelihood for both Model 1 and Model 2 using
our learnt harmonic mean estimator for τ = 0.01 and τ = 1, as in Friel and
Wyse (2012). A reversible jump algorithm (Green, 1995) is used by Friel and
Wyse (2012) to compute benchmark Bayes factors BF12 of 13.96 and 1.30,
respectively, for τ = 0.01 and τ = 1, which are treated as ground truth values.
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Table 2 Marginal likelihood values computed by the learnt harmonic mean estimator for
the Pima Indians logistic regression models for prior precision τ = 0.01. While the original
harmonic mean estimator fails catastrophically, our learnt harmonic mean estimator is
highly accurate.

Model M1 Model M2 log BF12

log(z1) log(z2) = log(z1)− log(z2)

Benchmark – – 2.63620
Estimated -257.23656 -259.86669 2.63014

± 0.00264 ± 0.00968 ± 0.01232
Error – – 0.00606
(learnt harmonic mean)

Error – – -2.67760
(original harmonic mean)

Table 3 Marginal likelihood values computed by the learnt harmonic mean estimator for
the Pima Indians logistic regression models for prior precision τ = 1.0. While the original
harmonic mean estimator fails catastrophically, our learnt harmonic mean estimator is
highly accurate.

Model M1 Model M2 log BF12

log(z1) log(z2) = log(z1)− log(z2)

Benchmark – – 0.26236
Estimated -247.30633 -247.56128 0.25495

± 0.00239 ± 0.00789 ± 0.01028
Error – – 0.00742
(learnt harmonic mean)

Error – – -0.44567
(original harmonic mean)

For our learnt harmonic mean estimator we use emcee to draw 5,000 sam-
ples for 200 chains, with burn in of 1,000 samples, yielding 4,000 posterior
samples per chain. We use 25% of the samples to learn the target model, using
cross-validation to select between the hypersphere and modified Gaussian mix-
ture model. In all cases the modified Gaussian mixture model is selected. The
remaining 75% of posterior samples are used for inferring the marginal like-
lihood. Computation time is typically a few minutes on a standard laptop,
including drawing samples (note that fewer samples could likely be used to
reduce computation time if required).

The marginal likelihood values computed by our learnt harmonic mean
estimator are shown in Table 2 and Table 3 for the cases τ = 0.01 and τ =
1, respectively. The benchmark values and errors of both the standard and
learnt harmonic mean estimator are also shown for comparison. While the
standard harmonic mean estimator fails catastrophically on this problem (Friel
and Wyse, 2012), our learnt harmonic mean estimator is robust and highly
accurate.
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4.5 Non-nested linear regression models: Radiata pine
example

We consider another example where the original harmonic mean estimator
was shown to fail catastrophically (Friel and Wyse, 2012). In particular, we
consider non-nested linear regression models for the Radiata pine data, which
is another common benchmark data-set (Williams, 1959), and show that our
learnt harmonic mean estimator is highly accurate.

For n = 42 trees, the Radiata pine data-set includes measurements of
the maximum compression strength parallel to the grain yi, density xi and
resin-adjusted density zi, for specimen i ∈ {1, . . . , n}. The question at hand is
whether density or resin-adjusted density is a better predictor of compression
strength. This motivates two Gaussian linear regression models:

Model M1 : yi = α+ β(xi − x̄) + ϵi, ϵi ∼ N(0, τ−1) ; (93)

Model M2 : yi = γ + δ(zi − z̄) + ηi, ηi ∼ N(0, λ−1) , (94)

where x̄ = 1
n

∑n
i=1 xi, z̄ = 1

n

∑n
i=1 zi, and τ and λ denote the precision (inverse

variance) of the noise for the respective models.
For Model 1, Gaussian priors are assumed for the bias and linear terms:

α ∼ N
(
µα, (r0τ)

−1
)
; (95)

β ∼ N
(
µβ , (s0τ)

−1
)
, (96)

with means µα = 3000 and µβ = 185, and precision scales r0 = 0.06 and
s0 = 6. A gamma prior is assumed for the noise precision:

τ ∼ Ga(a0, b0) , (97)

with shape a0 = 3 and rate b0 = 2 × 3002. The joint prior for (α, β, τ) then
reads:

π(α, β, τ) = π(α, β | τ)π(τ) (98)

= π(α | τ)π(β | τ)π(τ) (99)

=
(b0τ0)

a0(r0s0)
1/2

2πΓ(a0)
exp

(
−b0τ

)
× exp

(
−τ

2

(
r0(α− µα)

2 + s0(β − µβ)
2
))

. (100)
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Fig. 8 Graphical representation of the non-nested linear regression Model 1 for modelling
maximum compression strength for Radiata pine. Model 2 is similar.

The likelihood for Model 1 is given by

L(x, y) =
n∏

i=1

P(xi, yi |α, β, τ) (101)

=

n∏
i=1

√
τ

2π
exp

(
−τ

2

(
yi − α− β(xi − x̄)

)2)
(102)

=
( τ

2π

)n/2

exp
(
−τ

2

n∑
i=1

(
yi − α− β(xi − x̄)

)2)
, (103)

where x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T. For Model 2, the priors
adopted for (γ, δ, λ) are the same as those adopted for (α, β, τ) of Model 1,
respectively, with the same hyperparameters. The likelihood for Model 2 again
takes an identical form to Model 1. A graphical representation of Model 1 is
illustrated in Fig. 8 (Model 2 is similar).

One reason this problem has become a common benchmark for comparing
marginal likelihood estimators is that the marginal likelihood of the two models
can be computed analytically. The evidence for Model 1 is given by

z =
(2b0)

a0

πn/2

Γ(a0 + n/2)

Γ(a0)

|Q0|1/2

|M |1/2
(
yTy + µ0

TQ0µ0 − ν0
TMν0 + 2b0

)−a0−n/2
,

(104)
where µ0 = (µα, µβ)

T, Q0 = diag(r0, s0), M = XTX + Q0, and ν0 =
M−1(XTy+Q0µ0), for the feature matrix X with row i containing (1, xi− x̄).
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Table 4 Marginal likelihood values computed analytically and by the learnt harmonic
mean estimator for the Radiata pine non-nested linear regression models. While the
original harmonic mean estimator fails catastrophically, our learnt harmonic mean
estimator is highly accurate.

Model M1 Model M2 log BF21

log(z1) log(z2) = log(z2)− log(z1)

Analytic -310.12829 -301.70460 8.42368
Estimated -310.12807 -301.70413 8.42394

± 0.00072 ± 0.00074 ± 0.00145
Error 0.00022 0.00047 0.00026
(learnt harmonic mean)

Error – – -0.17372
(original harmonic mean)

We compute the marginal likelihood analytically using (104) and also
numerically using our learnt harmonic mean estimator. For the learnt har-
monic mean estimator we use emcee to draw 20,000 samples for 400 chains,
with burn in of 2,000 samples. We use 25% of the samples to learn the tar-
get model, adopting a simple hypersphere model, and use the remaining 75%
for inferring the marginal likelihood. Computation time is a few minutes on
a standard laptop, including drawing samples (note that fewer samples could
likely be used to reduce computation time if required).

The analytic and estimated marginal likelihood values are shown in Table 4
for the two models, with the Bayes factor comparing the two models. For the
values computed by our learnt harmonic mean estimator we also show the
estimated uncertainty. The errors of both the standard and learnt harmonic
mean estimator are shown for comparison. Note that the uncertainties esti-
mated by the learnt harmonic mean estimator appear reasonable. While the
standard harmonic mean estimator fails catastrophically on this problem (Friel
and Wyse, 2012), our learnt harmonic mean estimator is highly accurate.

4.6 Gaussian in varying dimensions

Finally, we illustrate the application of our estimator beyond low-dimensional
settings, considering experiments where the dimension of the parameter space
increases. For simplicity we consider a Gaussian likelihood with a uniform
prior, where the marginal likelihood can be computed analytically. We adopt
the simple hypersphere model, which is effective for a Gaussian posterior.
Results are illustrated in Table 5. Note that parameters were not optimised
and accurate results could likely be obtained with fewer samples. Further note
that the computation times recorded do not include the time accumulated
during initial burn-in. It is apparent that the estimator is accurate in settings
with dimensions O(103) and potentially beyond.
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Table 5 Marginal likelihood values computed analytically and by the learnt harmonic
mean estimator for a Gaussian posterior in varying dimensions. Note that parameters were
not optimised and results could likely be computed to comparable accuracy with fewer
samples (i.e. with lower computation time). Further note that the computation times
recorded do not include the time accumulated during initial burn-in.

Dimension Analytic Estimated Error Computation
log(z) log(z) (%) time

32 -29.406 -29.411 0.0180% ∼10 sec
64 -58.812 -58.813 0.0008% ∼20 sec
128 -117.62 -117.63 0.0026% ∼3 min
256 -235.25 -235.25 0.0015% ∼18 min
512 -470.50 -470.49 0.0006% ∼20 min
1024 -940.99 -941.06 0.0073% ∼3 hours

4.7 Cosmological example

We conclude our numerical experiments with an application of the learnt
harmonic mean estimator to a model comparison problem in cosmology. We
consider measurements of the Cosmic Microwave Background (CMB) tempera-
ture (T ) and polarisation (E) anisotropies from Data Release 4 of the Atacama
Cosmology Telescope (ACT) (Aiola et al, 2020; Choi et al, 2020).

The dataset consists of CMB power spectra CXY
ℓ , with {X,Y } = {T,E}

measured at angular multipoles ℓ up to 5000. CMB power spectra are functions
of the cosmological parameters that describe the model assumed for the compo-
sition and evolution of the Universe. The Λ Cold Dark Matter (ΛCDM) model
is currently regarded as the concordance cosmological scenario, as it provides
an excellent fit to numerous cosmological measurements. However, some of its
key components are poorly understood, including the cosmological constant Λ
that gives its name to the model and is deemed responsible for the accelerated
expansion of the Universe. Alternative models have been proposed to account
for cosmic acceleration. One of them attributes this phenomenon to a dynamic
dark energy component – a fluid whose equation of state (the relation between
its pressure P and density ρ) changes over time. Using redshift z as a proxy
for cosmic time (with z = 0 today), this can be written as P = w(z)ρ. A com-
mon parameterisation for w(z) is w(z) = w0+wa

z
1+z (Chevallier and Polarski,

2001; Linder, 2003), with w0 = −1 and wa = 0 corresponding to a cosmo-
logical constant. Thus, the w0waCDM model can be seen as an extension to
the ΛCDM model, to account for cosmic acceleration through a dynamic dark
energy field which introduces two additional cosmological parameters in the
model, w0 and wa.

We aim to perform a comparison between the ΛCDM and w0waCDM mod-
els using ACT CMB data. We employ the learnt harmonic mean estimator to
derive estimates of the Bayesian evidence for each model, and the Bayes factor
between the two. We then compare these numbers against those obtained with
an independent approach, namely a nested sampler which produces an esti-
mate of the evidence as well as posterior samples for each model. To run our
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Table 6 Priors for the parameters varied in the cosmological analyses. Note that all of
the parameters are shared between the ΛCDM and w0waCDM model except for w0 and
wa. U denotes a Uniform distribution, while N a Gaussian one. All priors are kept the
same between the emcee and PolyChord runs.

Parameter Prior

ωb U(0.005, 0.01)
ωcdm U(0.001, 0.99)
100 θs U(0.5, 10.)

τ N (0.065, 0.015)
ns U(0.8, 1.2)

ln 1010As U(1.61, 3.91)
y2p U(0.9, 1.1)

w0 U(−1.5,−0.5)
wa U(−0.5, 0.5)

experiments we use the publicly available pyactlike likelihood 4, developed
by the ACT collaboration to analyse their CMB power spectra measurements.
This likelihood only includes one additional ‘nuisance’ parameter, y2p, to the
cosmological parameters underlying the model of the Universe. This parameter
acts as a phenomenological rescaling of the spectra to account for undetected
systematics. Table 6 shows the priors assumed for all of the parameters varied
in the analysis. Priors on all parameters are shared between the emcee and
PolyChord runs, with the exception of w0 and wa used only in the dynamic
dark energy scenario.

We compare two experimental setups:

1. In the first one, we use the affine sampler emcee (Foreman-Mackey et al,
2013) to produce 30,000 samples of the posterior, using 300 walkers each
collecting 150 samples, of which we discard 50 for each walker as burn-in.
We run the sampler on a 60-core parallelised configuration, which takes
approximately 5 hours to complete. Once obtained the posterior samples,
we use our implementation of the learnt harmonic mean estimator to derive
an estimate of the evidence for each of the two cosmological models. We
use the hypersphere model for the learnt harmonic mean estimator in both
cosmological scenarios, and perform a 50:50 split of the posterior samples
for the training and testing phase.

2. In the second setup, we run the nested sampler PolyChord (Handley et al,
2015b,a) to obtain posterior samples and an estimate of the evidence for
each model. We run PolyChord through the Cobaya (Torrado and Lewis,
2021; Torrado and Lewis, 2019) software for cosmological data analysis. We
use the same parallelised configuration over 60 cores used for the emcee

runs, and default values for the PolyChord options. This leads to ∼ 5, 000
and 10, 000 samples for the ΛCDM and w0waCDM model, respectively,
obtained in ∼15 hours for both cases.

4https://github.com/ACTCollaboration/pyactlike/

https://github.com/ACTCollaboration/pyactlike/
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Fig. 9 Marginalised 68 % and 95% 2D posterior contours and 1D marginalised posterior
distribution for the parameters varied in the ΛCDM runs. red contours have been obtained
using emcee, while blue contours with PolyChord.

Fig. 9 and 10 show the posterior contours for the ΛCDM and w0waCDM
model, respectively. Each figure compares contours obtained with the emcee

(red) and PolyChord (blue) sampler. For the ΛCDM runs, we obtain a value
of the log-evidence logZ

logZ = −168.92± 0.35 (PolyChord)

logZ = −168.87± 0.29 (learnt harmonic mean estimator) (105)

while for w0waCDM we obtain

logZ = −169.38± 0.24 (PolyChord),

logZ = −169.32± 0.25 (learnt harmonic mean estimator). (106)
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Fig. 10 Same as Fig. 9, but for the w0waCDM model.

Combined, these measurements lead to a Bayes factor ∆ logZ = logZΛCDM −
logZw0waCDM

∆ logZ = 0.46± 0.42 (PolyChord),

∆ logZ = 0.45± 0.38 (learnt harmonic mean estimator). (107)

We can see from these results that the learnt harmonic mean estimator leads to
numerical conclusions on the comparison between the ΛCDM and w0waCDM
models in excellent agreement with those derived from running PolyChord,
i.e. mildly favouring ΛCDM. Note also that by virtue of its independence from
the sampling method, the learnt harmonic mean estimator allows the user to
resort to the emcee sampler which leads to ∼ 3 to 6 times more samples than
PolyChord in 1/3 of the time, using the same hardware resources.
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5 Software package

The learnt harmonic mean estimator is implemented in the harmonic software
package5, which is open source and publicly available. Careful consideration
has been given to the design and implementation of the code, following software
engineer best practices (for example, at the time of release test coverage is
over 96%).

Since the learnt harmonic mean estimator requires samples from the pos-
terior distribution only, the harmonic code is agnostic to the method or code
used to generate posterior samples. That said, harmonic works exceptionally
well with MCMC sampling techniques that naturally provide samples from
multiple chains by their ensemble nature, such as affine invariance ensemble
samplers (Goodman and Weare, 2010). As discussed in Sec. 2, we advocate
running a number of independent MCMC chains and using all of the correlated
samples within a chain to avoid the loss of efficiency that otherwise results
from thinning an MCMC chain. The emcee code6 (Foreman-Mackey et al,
2013) provides an excellent implementation of the affine invariance ensemble
samplers proposed by Goodman and Weare (2010). emcee is thus a natural
choice for use with harmonic and we have specifically designed harmonic to
ensure it works seamlessly with emcee (although of course other samplers can
also be considered). In code Listing 1 we give an example of usage of harmonic
with emcee to demonstrate how easy it is to use the combination for marginal
likelihood estimation.

5https://github.com/astro-informatics/harmonic
6https://emcee.readthedocs.io/en/stable/

https://github.com/astro-informatics/harmonic
https://emcee.readthedocs.io/en/stable/
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1 import numpy as np
2 import emcee
3 import harmonic
4

5 # Run sampler
6 sampler = emcee . EnsembleSampler ( nchains , ndim , l n p o s t e r i o r ,
7 args=[ p o s t e r i o r a r g s ] )
8 ( pos , prob , s t a t e ) = sampler . run mcmc ( pos , sample s pe r cha in )
9 samples = np . ascont iguousar ray ( sampler . chain [ : , nburn : , : ] )

10 lnprob = np . ascont iguousar ray ( sampler . l n p r obab i l i t y [ : , nburn : ] )
11

12 # Set up cha ins
13 cha ins = harmonic . Chains (ndim)
14 cha ins . add cha ins 3d ( samples , lnprob )
15 cha in s t r a i n , c h a i n s i n f e r = \
16 harmonic . u t i l s . s p l i t d a t a ( chains , t r a i n i ng p rop )
17

18 # Fit model
19 model = harmonic . model . KernelDensityEst imate (ndim , domain ,
20 hyper parameters )
21 model . f i t ( c h a i n s t r a i n . samples , c h a i n s t r a i n . l n p o s t e r i o r )
22

23 # Compute ev idence
24 ev = harmonic . Evidence ( c h a i n s i n f e r . nchains , model )
25 ev . add chains ( c h a i n s i n f e r )
26 l n ev idence , l n e v i d en c e s t d = ev . compute ln ev idence ( )

Listing 1 Example usage of harmonic to compute the marginal likelihood, using emcee to
perform MCMC sampling.

6 Conclusions

We present the learnt harmonic mean estimator to solve the problematic large
variance of the original estimator. The construction of our estimator follows by
interpreting the harmonic mean estimator as importance sampling and intro-
ducing a new target distribution that is learned to approximate the optimal but
inaccessible target (the normalised posterior), while minimising the variance of
the resulting estimator. We discuss techniques to compute the variance of the
estimator, its variance and to perform a number of additional computational
sanity checks. The estimator is implemented in the publicly available harmonic
software code. We demonstrate the application of our learnt harmonic mean
estimator on numerous benchmark problems, including a number of pathologi-
cal examples where the original harmonic mean estimator fails catastrophically.
In all cases our estimator is robust and highly accurate. The current work opens
up a number of avenues for future research. For example, similar approaches
can be taken in MCMC sampling more generally were appropriate target,
sampling densities or proposal distributions may be learned. Alternative more
effective target models can be developed that better scale to higher dimen-
sional settings. Since the learnt harmonic mean estimator is agnostic to the
sampling strategy, it is also an ideal solution for computing the marginal like-
lihood for model comparison in simulation-based inference. We are already
actively pursuing this avenue of research, with promising preliminary results.
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