
RASTI 000, 1–13 (2022) Preprint 6 October 2023 Compiled using rasti LATEX style file v3.0

Bayesian model comparison for simulation-based inference

A. Spurio Mancini,1★ M. M. Docherty,1 M. A. Price1 and J. D. McEwen1,2
1Mullard Space Science Laboratory, University College London, Dorking, RH5 6NT, UK
2Alan Turing Institute, London, NW1 2DB, UK

Accepted —. Received —; in original form —

ABSTRACT
Comparison of appropriate models to describe observational data is a fundamental task of science. The Bayesian model evidence,
or marginal likelihood, is a computationally challenging, yet crucial, quantity to estimate to perform Bayesian model comparison.
We introduce a methodology to compute the Bayesian model evidence in simulation-based inference (SBI) scenarios (also often
called likelihood-free inference). In particular, we leverage the recently proposed learned harmonic mean estimator and exploit
the fact that it is decoupled from the method used to generate posterior samples, i.e. it requires posterior samples only, which may
be generated by any approach. This flexibility, which is lacking in many alternative methods for computing the model evidence,
allows us to develop SBI model comparison techniques for the three main neural density estimation approaches, including
neural posterior estimation (NPE), neural likelihood estimation (NLE), and neural ratio estimation (NRE). We demonstrate and
validate our SBI evidence calculation techniques on a range of inference problems, including a gravitational wave example.
Moreover, we further validate the accuracy of the learned harmonic mean estimator, implemented in the harmonic software, in
likelihood-based settings. These results highlight the potential of harmonic as a sampler-agnostic method to estimate the model
evidence in both likelihood-based and simulation-based scenarios.
Key words: machine learning – numerical methods – software – statistics – simulation-based inference

1 INTRODUCTION

Bayesian model comparison provides a robust and principled sta-
tistical framework for the selection of appropriate scientific models
to describe observational data. The key quantity to perform model
comparison in a Bayesian inference framework is the model evi-
dence, or marginal likelihood, whose estimate allows one to assign
relative weights to different models (see, e.g., Trotta 2008 for a re-
view of Bayesian model comparison, particularly in the context of
cosmology). However, obtaining a precise and accurate estimate of
the Bayesian model evidence is a computationally challenging task,
involving a multi-dimensional integral which may quickly exceed the
available computational resources for parameter spaces of even mod-
erate dimensions. A variety of techniques for computing the Bayesian
model evidence have been proposed (see, e.g., Friel & Wyse 2012;
Llorente et al. 2023 for reviews).

One of the most widely used classes of algorithms for estimating
the model evidence, particularly in astrophysics and cosmology, is
nested sampling (Skilling 2006), a method for which posterior infer-
ences can also be computed as a byproduct (see, e.g., Buchner 2021;
Ashton et al. 2022 for reviews of nested sampling). Popular nested
sampling algorithms, such as MultiNest (Feroz & Hobson 2008;
Feroz et al. 2009) and PolyChord (Handley et al. 2015a,b) have been
of remarkable success in multiple research areas. However, some of
them can struggle in high dimensional parameter spaces. The re-
cently proposed proximal nested sampling framework scales to very
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high dimensional settings (Cai et al. 2022). However, proximal nested
sampling is restricted to log-convex likelihoods. Nevertheless, such
likelihoods are common and so proximal nested sampling is likely
to be particularly useful for inverse imaging problems. As the name
suggests, nested sampling couples the computation of the model ev-
idence to the sampling approach, restricting its flexibility.

The recently proposed learned harmonic mean estimator
(McEwen et al. 2021) for computation of the model evidence re-
moves this restriction. While the original harmonic mean estimator
(Newton & Raftery 1994) can fail catastrophically since its vari-
ance may become very large and may not be finite (Neal 1994), the
learned harmonic mean solves this problem by learning an approxi-
mation of the optimal internal importance sampling target distribu-
tion (McEwen et al. 2021). Critically, the learned harmonic mean
estimator requires only samples from the posterior and so is agnostic
to sampling strategy, affording it great flexibility, which is crucial to
the current work.

The need for efficient and reliable methods for computing the
model evidence applies not only to likelihood-based settings, but
also to simulation-based inference (SBI) frameworks. In the SBI set-
ting (sometimes referred to as likelihood-free inference; LFI), the
likelihood is either not available or too costly to be evaluated, and
the inference process relies solely on the ability to simulate observ-
ables. Approximate Bayesian computation (ABC) is the traditional,
prototypical SBI technique that relies on rejection sampling of pa-
rameter sets on the basis of a similarity metric between the simulated
observables and the observations (see, e.g., Beaumont 2019). How-
ever, ABC methods can easily require an unfeasibly large number of
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simulations to reach convergence, limiting their applicability. More
recently neural density estimation techniques have been introduced
to surrogate densities directly. Such novel frameworks have seen nu-
merous successful applications in various scientific areas, carrying
great promise for the future due to their ability to avoid the evalua-
tion of an explicit (and possibly incorrect) likelihood function, while
limiting the number of simulations with clever use of cutting-edge
machine learning algorithms. For a recent review of SBI techniques
we refer the reader to Cranmer et al. (2020). Neural density estima-
tion methods have recently found remarkable success in cosmology,
with general-purpose open-source software readily available (e.g.
pydelfi1 by Alsing et al. 2019; swyft2 by Cole et al. 2022).

The development of new SBI techniques has so far mostly concen-
trated on optimising the task of parameter estimation, while model
selection has received less attention. Nevertheless, model selection
is a critical component of a complete statistical analysis, particularly
in scientific fields where selection of the appropriate model is often
the fundamental question. While there has been some consideration
of model selection for SBI, the field remains nascent. Brewer et al.
(2011) propose a technique based on diffusive nested sampling to
compute the model evidence for ABC. However, this approach is
restricted to ABC, which as discussed above can be inefficient and
of limited applicability, and is not straightforwardly generalisable to
modern neural density estimation approaches.

In this article we introduce a methodology to compute the model
evidence, in order to facilitate Bayesian model comparison, for mod-
ern neural density estimation approaches to SBI. Our methodology
leverages the learned harmonic mean estimator (McEwen et al. 2021).
We exploit the fact that the learned harmonic mean estimator is agnos-
tic to sampling strategy and only requires samples from the posterior
distribution. In some neural density estimation approaches samples
can be generated directly (e.g. by pushing samples from a simple base
distribution, such as a Gaussian, forward through a normalising flow;
Papamakarios et al. 2021). To support such neural density estimation
approaches it is therefore essential that model evidence computation
is decoupled from sampling strategy, as is the case with the learned
harmonic mean estimator.

The remainder of this article is structured as follows. In Sec. 2 and
Sec. 3 we concisely review, respectively, Bayesian model compari-
son and neural density estimation approaches to SBI. In Sec. 4 we
introduce our methodology to perform Bayesian model comparison
in the context of SBI, leveraging the learned harmonic mean esti-
mator (McEwen et al. 2021). We present algorithms to compute the
Bayesian model evidence for each of the three main neural density
estimation approaches to SBI that are reviewed by Cranmer et al.
(2020). In Sec. 5 we report the results from numerical experiments
that demonstrate and validate our methodology. Finally, we conclude
in Sec. 6 with a review of our main findings.

2 BAYESIAN MODEL COMPARISON

We review here the fundamentals of Bayesian model comparison,
focusing on the challenges associated with estimation of the model
evidence. For a more extensive review we refer the reader to, e.g.,
Trotta (2008). We also summarise the key concepts underlying the
learned harmonic mean estimator since it is an integral component
of the current work (we refer the reader to McEwen et al. 2021 for
further details).

1 https://github.com/justinalsing/pydelfi
2 https://github.com/undark-lab/swyft

2.1 Bayesian model evidence

The definition of model evidence in a Bayesian statistical framework
follows directly from Bayes’ theorem. For a given model M, Bayes’
theorem describes the connection between the conditional probabil-
ities of model parameters 𝜽 and data 𝒅:

𝑝(𝜽 |𝒅,M) = 𝑝(𝒅 |𝜽 ,M)𝑝(𝜽 |M)
𝑝(𝒅 |M) , (1)

where 𝑝(𝜽 |𝒅,M) is the posterior distribution of the parameters,
given the observed data 𝒅 and the assumed model M, 𝑝(𝒅 |𝜽 ,M) is
the likelihood function of the data 𝒅 given parameters 𝜽 and model
M, 𝑝(𝜽 |M) is the prior distribution of model parameters 𝜽 for a given
model M, and 𝑝(𝒅 |M) is the model evidence, i.e. the probability of
data 𝒅 for a given model M. The Bayesian model evidence is given
by the normalisation factor of the posterior distribution 𝑝(𝜽 |M, 𝒅):

𝑧 = 𝑝(𝒅 |M) =
∫

d𝜽 𝑝(𝒅 |𝜽 ,M)𝑝(𝜽 |M). (2)

Since the model evidence is a normalisation factor for the pos-
terior distribution and is independent of the model parameters, the
evidence is usually disregarded in parameter estimation tasks. How-
ever, for model selection the evidence becomes the crucial quantity
to compute. Being the integral of the likelihood over the prior (cf.
Eq. 2), the evidence allows one to assign relative weights to differ-
ent models. The evidence ratio between two competing models M1
and M2 enters the expression for the comparison of their posterior
distributions, which again follows from Bayes’ theorem:
𝑝(M1 |𝒅)
𝑝(M2 |𝒅)

=
𝑝(𝒅 |M1)𝑝(M1)
𝑝(𝒅 |M2)𝑝(M2)

. (3)

In many cases a priori probabilities 𝑝(M1) and 𝑝(M2) of the two
models are considered to be equal, hence the ratio of posterior dis-
tributions becomes equivalent to the evidence ratio or Bayes factor

𝐵12 =
𝑝(𝒅 |M1)
𝑝(𝒅 |M2)

=
𝑧1
𝑧2

. (4)

For notational brevity, henceforth we drop the explicit conditioning
on models unless there are multiple models under consideration.

2.2 Algorithms for evidence estimation

Computing the evidence for a given model is numerically challeng-
ing due to the multi-dimensional integral in Eq. 2. Many techniques
have been proposed to tackle this challenge, such as thermodynamic
integration (e.g. Beltrán et al. 2005; Gregory 2005; Bridges et al.
2006), the Savage-Dickey density ratio (e.g. Trotta 2007), methods
based on 𝑘-th nearest-neighbour distances in parameter space (Heav-
ens et al. 2017), nested sampling (Skilling 2006), and others (see,
e.g., Friel & Wyse 2012; Llorente et al. 2023).

Nested sampling reduces the computation of the evidence to the
evaluation of a one-dimensional integral, and as a byproduct pro-
vides samples that can be used to compute posterior inferences, thus
supporting both parameter estimation and model selection. Multi-
modal nested sampling, implemented in the MultiNest3 software
(Feroz & Hobson 2008; Feroz et al. 2009; see also Buchner et al.
2014 for the Python wrapper PyMultiNest4), has seen enormous
success, with widespread application across multiple research fields,
as has the slice sampling nested sampling algorithm implemented in
the PolyChord5 software (Handley et al. 2015a,b). Proximal nested

3 https://github.com/farhanferoz/MultiNest
4 https://github.com/JohannesBuchner/PyMultiNest
5 https://github.com/PolyChord/PolyChordLite
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sampling (Cai et al. 2022) is implemented in the ProxNest6 soft-
ware, which has only been released very recently but is likely to be
particularly useful for inverse imaging problems.

Measuring the model evidence is a numerical process that, if re-
peated multiple times, produces a distribution of values. Ideally,
these distributions would be narrow, and even more importantly they
should provide unbiased estimates of the model evidence. However,
this might not always be the case (Lemos et al. 2022). It is, therefore,
crucial to develop alternative ways to estimate the model evidence, so
as to perform cross-checks on the final model selection statements.
Throughout we use the terminology of an accurate estimator as one
with a low bias and a precise estimator as one with a low variance.

2.3 Learned harmonic mean estimator

The original harmonic mean estimator for computation of the
Bayesian model evidence was first introduced by Newton & Raftery
(1994). From Bayes’ theorem it follows that the reciprocal evidence
is related to the harmonic mean of the likelihood by

𝜌 ≡ E𝑝 (𝜽 |𝒅)
[

1
𝑝(𝒅 |𝜽)

]
=

∫
d𝜽

1
𝑝(𝒅 |𝜽) 𝑝(𝜽 |𝒅) = 1

𝑧
. (5)

This relation can be used to construct an estimator of the reciprocal
evidence

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

1
𝑝(𝒅 |𝜽𝑖)

, 𝜽𝑖 ∼ 𝑝(𝜽 |𝒅), (6)

using 𝑁 samples {𝜽𝑖}𝑁𝑖=1 of the posterior distribution 𝑝(𝜽 |𝒅). How-
ever, this estimator may present very large or even diverging variance
(Neal 1994).

Gelfand & Dey (1994) proposed a modification to the original
harmonic mean estimator, what we call the re-targeted harmonic
mean estimator, introducing a normalised target distribution 𝜑(𝜽) to
define the modified estimator

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝜑(𝜽𝑖)
𝑝(𝒅 |𝜽𝑖)𝑝(𝜽𝑖)

, 𝜽𝑖 ∼ 𝑝(𝜽 |𝒅), (7)

from which the original harmonic mean estimator is recovered for
𝜑(𝜽) = 𝑝(𝜽).

The original harmonic mean estimator can be interpreted as im-
portance sampling, where the importance sampling distribution is
the posterior and the target distribution is the prior. It is therefore not
surprising that the original estimator suffers poor variance properties
since the prior is typically broader than the posterior, whereas im-
portance sampling requires the sampling density to be broader than
the target. By introducing a new target 𝜑(𝜽) this issue can be cir-
cumvented provided 𝜑(𝜽) is narrower than the posterior. Critically,
however, the introduced target must be a normalised probability dis-
tribution.

The question remains: how does one set the target distribution? A
variety of approaches have been considered previously, however none
have proved completely satisfactory. One approach is to consider a
multivariate Gaussian (Chib 1995); however, such a target typically
has tails that are too broad. An alternative is to consider indicator
functions (Robert & Wraith 2009; van Haasteren 2014); however, for
complicated posterior distributions these typically capture a small
region of parameter space only and so are inefficient.

6 https://github.com/astro-informatics/proxnest

It was recognised by McEwen et al. (2021) that the optimal target
distribution is the normalised posterior

𝜑optimal (𝜽) = 𝑝(𝒅 |𝜽)𝑝(𝜽)
𝑧

. (8)

While this exact quantity is a priori inaccessible since it involves
knowledge of the evidence 𝑧 — precisely the quantity we are at-
tempting to estimate — an approximation of 𝜑(𝜽) can be derived
from posterior samples by machine learning techniques. This is the
rationale of the learned harmonic mean estimator of McEwen et al.
(2021). Moreover, the learned approximation of the posterior need
not be highly accurate; but critically it must have narrower tails than
the posterior. Strategies to learn appropriate targets with these prop-
erties are presented in McEwen et al. (2021). In a nutshell, when
learning models for 𝜑(𝜽) a bespoke optimisation problem is consid-
ered that penalises the variance of the resulting learned harmonic
mean estimator, while ensuring it is unbiased, with possible addi-
tional reguarlisation. This effectively ensures the tails of 𝜑(𝜽) are
contained within the posterior. Thus, instead of learning a general
distribution that matches the posterior, a distribution that is effective
for the subsequent evidence computation is learned. For further de-
tails see McEwen et al. (2021). Note that 𝜑(𝜽) can be trained simply
from samples of the posterior and evaluating the posterior density
is not strictly necessary. However, it is necessary to evalute the nor-
malised density of 𝜑(𝜽) once it is trained. The learned harmonic
mean estimator is implemented in the harmonic7 software.

We conclude this section by highlighting that the learned harmonic
mean estimator produces estimates of the evidence purely from sam-
ples of the posterior distribution; there is no requirement on the
specific method used for sampling, i.e. harmonic is agnostic to the
method used to generate posterior samples. As we shall see later in
this work, this is the key property of the learned harmonic mean
estimator that allows it to be used in a variety of simulation-based
inference scenarios.

3 SIMULATION-BASED INFERENCE (SBI)

We provide a brief overview of the main algorithms used for SBI
(simulation-based inference), referring the reader to Cranmer et al.
(2020) for a more extensive review. The focus of recent SBI devel-
opments and existing literature is on parameter estimation, hence we
discuss SBI in this context. In Sec. 4 we introduce methodologies to
perform Bayesian model comparison in an SBI setting.

The original SBI methodology, based on ABC (approximate
Bayesian computation) (see, e.g., Beaumont 2019), involves sim-
ulating realisations of the observables at each of the explored points
in parameter space, and accepting or rejecting these points based on
their similarity with the observed data, within a tolerance 𝜖 . This
rejection sampling method recovers an accurate representation of the
underlying density distribution in the limit 𝜖 → 0, at which point the
low simulation efficiency makes computational costs infeasibly high
for inference of parameter spaces with even moderate dimensional-
ity. More recently, neural density estimation techniques have been
introduced to overcome this computational limitation by increasing
simulation efficiency. We focus the remainder of this article on neural
density estimation approaches for SBI.

In contrast to ABC, neural density estimation leverages deep neural
networks to approximate conditional probability densities and is able

7 https://github.com/astro-informatics/harmonic
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to speed up inference by orders of magnitude (Papamakarios & Mur-
ray 2016). Neural density estimation involves learning a conditional
density estimator 𝑞𝝓 , parameterised by weights 𝝓, to approximate
a target distribution (either the posterior distribution, the likelihood
function or a density ratio proportional to the likelihood) from a
training set of 𝑁 pairs of (typically) prior samples and simulations
{𝜽𝑖 , 𝒅𝑖}𝑁1=1. Provided the density estimator is sufficiently expressive,
𝑞𝝓 will recover an accurate estimate of the target distribution in the
limit 𝑁 → ∞.

Neural density estimation workflows have three main phases: sim-
ulation, training and inference. The simulation phase generates the
training pairs {𝜽𝑖 , 𝒅𝑖} that are used in the training phase to tune the
weights of the neural network 𝝓 such that 𝑞𝝓 approximates the target
density. In the inference phase, 𝑞𝝓 is then conditioned on a specific
observation 𝒅0 and parameter inference is performed.

Single runs of the simulation and training phases amortises the
training of the density estimator, allowing offline inference to be run
on multiple different observations, aptly named amortised neural
density estimation. However, we are often interested in inference on a
specific observation 𝒅0. For this, amortised neural density estimation
tends to be inefficient as generating training pairs for the density
estimator across the entire prior parameter support includes many
points in parameter space with very low posterior density 𝑝(𝜽 |𝒅0).

To rectify this simulation inefficiency one can run sequential neu-
ral density estimation, where multiple rounds of simulation and train-
ing are run sequentially to ensure there is a greater focus on regions
of high posterior density. This is done by generating simulations
from an alternative prior proposal distribution 𝑝(𝜽). This proposal
distribution is iteratively updated between rounds such that for 𝑅

rounds, the proposal posterior of the 𝑖-th round 𝑝𝑖 (𝜽 |𝒅0) becomes
the proposal prior for the subsequent round 𝑝𝑖+1 (𝜽). This sequen-
tial approach can further increase simulation efficiency by orders of
magnitude compared to the amortised counterpart (Papamakarios &
Murray 2016), at the expense of forgoing observation-agnostic flex-
ibility. Truncation schemes (Miller et al. 2020, 2021; Deistler et al.
2022; Karchev et al. 2022) also follow this sequential approach, by
truncating the prior distribution at each sequential step in order to
reduce the total number of simulations.

We briefly review the three main approaches to neural density
estimation (Cranmer et al. 2020) (see also Lueckmann et al. 2021, for
a benchmark of the various algorithms). When referring to variants of
these implementations we follow the nomenclature of Durkan et al.
(2020).

3.1 Neural posterior estimation (NPE)

Neural posterior estimation (NPE) was first introduced by Papa-
makarios & Murray (2016) and involves training a conditional den-
sity estimator to approximate the posterior density, such that
𝑞𝝓 (𝜽 |𝒅) → 𝑝(𝜽 |𝒅), by minimising the loss function

L(𝝓) = E𝑝 (𝒅 |𝜽 ) 𝑝 (𝜽 )
[
−log 𝑞𝝓 (𝜽 |𝒅)

]
. (9)

For sequential neural posterior estimation, iteratively updating the
proposal distribution between inference rounds results in the density
estimator learning a proposal posterior density 𝑝(𝜽 |𝒅) that is related
to the true posterior density by

𝑝(𝜽 |𝒅) ∝ 𝑝(𝜽)
𝑝(𝜽) 𝑝(𝜽 |𝒅). (10)

Three variants of NPE have been introduced to recover the true
posterior from the proposal posterior.

The original neural posterior estimation method (NPE-A; Papa-
makarios & Murray 2016) trains a mixture density network to target
the posterior distribution. A post-hoc analytical correction is then
applied to the resulting proposal posterior to recover an approxima-
tion of the true posterior (cf. Eq. 10). NPE-A considers Gaussian or
Gaussian mixture proposal distributions so that the correction factor
can be computed analytically.

To circumvent the requirement for analytical computation, Lueck-
mann et al. (2017) propose a method (NPE-B) where the proposal
correction is embedded as an importance weight in the loss function.
Whilst more flexible than NPE-A, this method has been shown to
suffer poor performance as the importance weights in the loss func-
tion are susceptible to high variance, resulting in early termination
of training.

Finally, Greenberg et al. (2019) propose a neural posterior estima-
tion method (NPE-C) that reparameterises the problem to recover a
learned approximation 𝑞𝝓 (𝜽 |𝒅) of the true posterior from a density
estimator 𝑞𝝓 (𝜽 |𝒅) of the proposal posterior using a tractable sum of
discrete atomic proposals over the support of the true posterior. This
latter approach allows more flexibility in the choice of density estima-
tor, including cutting-edge normalising flow models (Papamakarios
et al. 2017; Durkan et al. 2019). In our subsequent experiments we
only consider this neural posterior estimation method, which we sim-
ply refer to as NPE for the remainder of this article.

NPE learns the posterior density directly, typically for a probabilis-
tic model from which samples can be drawn directly. For example,
samples can be drawn directly from a Gaussian mixture density net-
work or from a normalising flow, where for the latter samples are first
drawn from a simple base distribution such as a Gaussian and pushed
forward through the flow to yield samples of the target distribution.
Consequently, generating samples avoids the need for Markov chain
Monte Carlo (MCMC) sampling and can be performed rapidly and
in parallel, significantly reducing computation time for inference.

3.2 Neural likelihood estimation (NLE)

Neural likelihood estimation (NLE) was first introduced by Papa-
makarios et al. (2019) and involves training a conditional density
estimator to approximate the likelihood function (considering it as a
probability distribution over the data), such that 𝑞𝝓 (𝒅 |𝜽) → 𝑝(𝒅 |𝜽),
by minimising the loss function

L(𝝓) = E𝑝 (𝒅 |𝜽 ) 𝑝 (𝜽 )
[
−log 𝑞𝝓 (𝒅 |𝜽)

]
. (11)

In contrast to NPE, sequential NLE can be implemented without a
correction between 𝑞𝝓 (𝒅 |𝜽) and 𝑞𝝓 (𝒅 |𝜽). In principle, simulations
can be generated for any proposal distribution and, consequently,
simulations from all sequential rounds, not just the latest, can be
used when training (Papamakarios et al. 2019).

This ability to seamlessly optimise simulation efficiency, how-
ever, comes at the expense of requiring an external MCMC sampling
stage to generate samples from the surrogate posterior 𝑞𝝓 (𝒅 |𝜽)𝑝(𝜽)
for inference, which increases inference time and computational cost
significantly relative to NPE, where samples can be generated di-
rectly.

3.3 Neural ratio estimation (NRE)

Neural ratio estimation (NRE) was first introduced by Hermans et al.
(2020) and involves approximating the posterior density 𝑝(𝜽 |𝒅) in-
directly by learning a density ratio 𝑟𝝓 (𝒅, 𝜽) that is proportional to
the likelihood, where 𝝓 denotes the model weights. This is done by
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Evaluate approx. likelihood 
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using HARMONIC

Train
NRE

Train
NLE
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Compute evidence 
using HARMONIC
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Figure 1. Schematic overview of three novel techniques that we introduce to compute the evidence in SBI settings for neural posterior, likelihood and ratio
estimation methods (NPE, NLE, NRE, respectively). The yellow training blocks represent all phases of neural density estimation, where each block can be run
in an amortised or sequential setting.

training a binary classifier to discriminate samples drawn from the
joint and marginal distributions of training pairs. The classifier then
learns the ratio

𝑟𝝓 (𝒅, 𝜽) =
𝑝(𝒅, 𝜽)
𝑝(𝒅)𝑝(𝜽) =

𝑝(𝒅 |𝜽)
𝑝(𝒅) =

𝑝(𝜽 |𝒅)
𝑝(𝜽) . (12)

A further NRE variant was devised by Durkan et al. (2020). This
variant extends the binary classifier to a multi-class one, hence we
adopt this variant for our numerical experiments and simply refer to
it as NRE for the remainder of this paper.

Similarly to NLE, an additional MCMC sampling step can be used
to generate samples from the surrogate posterior 𝑟𝝓 (𝒅, 𝜽)𝑝(𝜽). As
with NLE, this increases inference time and computation cost signif-
icantly relative to NPE. Alternatively, however, one can sample from
the prior when it is tractable and incoporate approximate importance
sampling weights (given by the ratio itself).

4 BAYESIAN MODEL COMPARISON FOR SBI

We discussed the importance and challenge of computing the model
evidence for Bayesian model selection in Sec. 2, which is a funda-
mental component of many scientific analyses. Separately in Sec. 3
we discussed three recent neural density estimation techniques for
parameter estimation in an SBI (simulation-based inference) setting,
which offer great promise for scientific analyses where the likelihood
is often intractable or too costly to be evaluated. In this section we
unify these two topics by introducing a methodology to compute the
Bayesian model evidence in all of the three neural density estimation
approaches. The evidence computation technique corresponding to
each neural density estimation approach is represented schematically

in Fig. 1. Our approaches support density estimation training phases
run in either an amortised or sequential setting.

4.1 Neural posterior estimation (NPE)

Our approach to compute the evidence for NPE is shown schemat-
ically in the left hand panel of Fig. 1. We use NPE to learn an ap-
proximation 𝑞NPE

𝝍 (𝜽 |𝒅) of the posterior, parameterised by network
weights𝝍. This approach provides the ability to rapidly generate sam-
ples directly from the surrogate posterior, i.e. 𝜽𝑖

direct∼ 𝑞NPE
𝝍 (𝜽 |𝒅).

While NPE also provides the ability to evaluate the surrogate nor-
malised posterior, the normalisation constant itself, i.e. the model
evidence, is not accessible. To compute the model evidence we there-
fore adopt the learned harmonic mean estimator, using the samples
drawn directly from the surrogate posterior. For the learned harmonic
mean estimator it is also necessary to evaluate the likelihood at sam-
ple positions (see Eq. 7), hence we adopt NLE to provide a surrogate
likelihood. Using NLE we learn an approximation 𝑞NLE

𝝓 (𝒅 |𝜽) of the
likelihood, parameterised by a separate set of network weights 𝝓.
With a set of posterior samples and the surrogate likelihood learned
by NLE to hand, we use the learned harmonic mean estimator to
obtain an estimate of the reciprocal of the model evidence by

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝜑(𝜽𝑖)
𝑞NLE
𝝓 (𝒅 |𝜽𝑖)𝑝(𝜽𝑖)

, 𝜽𝑖
direct∼ 𝑞NPE

𝝍 (𝜽 |𝒅). (13)

The proposed approach to compute the model evidence in the NPE
setting does involve training two neural density estimators, both NPE
and NLE. However, it does not require any MCMC sampling. Sam-
ples can be generated directly from the surrogate posterior learned by
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NPE (e.g. by pushing samples from a simple base distribution such
as a Gaussian through a normalising flow), which is highly efficient
and can also be computed in parallel.

Given trained NPE and NLE surrogate densities, an alternative
naïve technique can also be considered to estimate the model ev-
idence. For any model parameter 𝜽 the ratio of the unnormalised
surrogate posterior, formed from the surrogate likelihood and prior,
to the normalised surrogate posterior, i.e.

𝑞NLE
𝝓 (𝒅 |𝜽)𝑝(𝜽)

𝑞NPE
𝝍 (𝜽 |𝒅)

, (14)

provides an estimate of the evidence. An estimate of the evidence is
thus recovered for a single parameter 𝜽 , which need not be drawn
from any particular distribution. However, such an estimate of the
evidence will be incredibly noisy, i.e. will have an extremely large
variance. Many parameters can be used to generate many estimates
of the evidence that can be averaged. Nevertheless, the resulting esti-
mate of the evidence remains highly noisy with a very large variance.
This naïve estimator relies on the ratio of two approximate quanti-
ties, hence approximation errors compound. Contrast this with the
learned harmonic mean estimator. While our learned harmonic mean
approach does use NPE to learn a surrogate posterior 𝑞NPE

𝝍 (𝜽 |𝒅), the
density is never evaluated. We only require samples from the cor-
responding distribution. The learned harmonic mean does require
learning the importance target 𝜑(𝜽), and this is indeed learned to
approximate the posterior, but the target need only be normalised
and have tighter tails than the true posterior 𝑝(𝜽 |𝒅) — it does not
need to be an accurate approximation of the posterior. Consequently,
our proposed approach to compute the evidence in the NPE setting,
based on the learned harmonic mean estimator, does not suffer com-
pounding sources of error and thus provides increased stability over
the naïve approach.

While the focus of the current article is SBI, we also comment that
the ideas presented here can also be applied to accelerate evidence
computation for likelihood-based inference. Crucially, throughout
our approach to compute the evidence in the NPE setting, MCMC
sampling is not required. Posterior samples can be generated directly,
rapidly and in parallel. If a likelihood is available this can simply be
substituted for the surrogate likelihood learned by NLE. Therefore in
the likelihood-based setting the approach can be altered to leverage
the speed of posterior sample generation of NPE, while adopting
the analytical likelihood function, to obtain a rapid estimate of the
reciprocal evidence without any further computation, as described
by

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝜑(𝜽𝑖)
𝑝(𝒅 |𝜽𝑖)𝑝(𝜽𝑖)

, 𝜽𝑖
direct∼ 𝑞NPE

𝝍 (𝜽 |𝒅). (15)

Clearly in this setting NLE need not be performed.

4.2 Neural likelihood estimation (NLE)

Our approach to compute the evidence for NLE is shown schemat-
ically in the central panel of Fig. 1. We use NLE to learn an ap-
proximation of the likelihood function 𝑞NLE

𝝓 (𝒅 |𝜽), parameterised by
network weights 𝝓. As is typical for NLE, this approach requires
MCMC sampling to generate samples from the unnormalised surro-
gate posterior, i.e. 𝜽𝑖

MCMC∼ 𝑞NLE
𝝓 (𝒅 |𝜽)𝑝(𝜽). NLE also provides the

ability to evaluate the surrogate likelihood. With a set of posterior
samples and the surrogate likelihood learned by NLE to hand, we

use the learned harmonic mean estimator to compute an estimate of
the reciprocal of the model evidence by

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝜑(𝜽𝑖)
𝑞NLE
𝝓 (𝒅 |𝜽𝑖)𝑝(𝜽𝑖)

, 𝜽𝑖
MCMC∼ 𝑞NLE

𝝓 (𝒅 |𝜽)𝑝(𝜽). (16)

This proposed approach to compute the model evidence in the NLE
setting involves training only one neural density estimator, which is
decidedly more efficient than training two such estimators as re-
quired in the NPE and NRE settings (cf. Sec. 4.1 and Sec. 4.3).
However, it does require MCMC sampling to generate samples from
the unnormalised surrogate posterior which is required to compute
the evidence using the learned harmonic mean estimator.

With a trained NLE surrogate density 𝑞NLE
𝝓 (𝒅 |𝜽𝑖) and the prior

𝑝(𝜽) to hand, alternative techniques that only require the likelihood
function and prior could also be considered to compute an estimate
of the evidence.

4.3 Neural ratio estimation (NRE)

Our approach to compute the evidence for NRE is shown schemati-
cally in the right hand panel of Fig. 1. We use NRE to indirectly learn
an approximation 𝑟NRE

𝝍 (𝒅, 𝜽)𝑝(𝜽) of the posterior, parameterised by
network weights𝝍. Similarly to our NPE approach, the normalisation
constant of the surrogate posterior learned by NRE, i.e. the model
evidence, is not accessible. We therefore adopt the learned harmonic
mean estimator to compute the model evidence, for which it is also
necessary to evaluate the likelihood at sample positions (see Eq. 7),
hence we adopt NLE to provide a surrogate likelihood. Using NLE
we learn an approximation 𝑞NLE

𝝓 (𝒅 |𝜽) of the likelihood, parame-
terised by network weights 𝝓. With a set of posterior samples and
the surrogate likelihood learned by NLE to hand, we use the learned
harmonic mean estimator to obtain an estimate of the reciprocal of
the model evidence by

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝜑(𝜽𝑖)
𝑞NLE
𝝓 (𝒅 |𝜽𝑖)𝑝(𝜽𝑖)

, 𝜽𝑖
MCMC∼ 𝑟NRE

𝝍 (𝒅, 𝜽)𝑝(𝜽). (17)

The proposed approach to compute the model evidence in the NRE
setting does involve training two neural density estimators, both NRE
and NLE. Furthermore, external MCMC sampling is required above
to generate samples from the trained NRE surrogate posterior.

Alternatively, since NRE provides access to an approximation of
the normalised posterior by 𝑟NRE

𝝍 (𝒅, 𝜽)𝑝(𝜽), via importance sam-
pling one could instead sample from the prior to avoid the need for
MCMC sampling:

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝑟NRE
𝝍 (𝒅, 𝜽𝑖)𝜑(𝜽𝑖)

𝑞NLE
𝝓 (𝒅 |𝜽𝑖)𝑝(𝜽𝑖)

, 𝜽𝑖
direct∼ 𝑝(𝜽). (18)

However, the above estimator involves the ratio of two approximate
quantities and so approximation errors compound. Furthermore, one
could consider using the NRE approximation of the nomalised pos-
terior for the learned harmonic mean target distribution 𝜑(𝜽):

𝜌̂ =
1
𝑁

𝑁∑︁
𝑖=1

[
𝑟NRE
𝝍 (𝒅, 𝜽𝑖)

]2

𝑞NLE
𝝓 (𝒅 |𝜽𝑖)

, 𝜽𝑖
direct∼ 𝑝(𝜽). (19)

However, such an estimator is also unlikely to be well-behaved since
we have not explicitly ensured the tails of 𝜑(𝜽) are narrower than the
posterior and it is a ratio of two approximate quantities, one of which
is squared, and so approximation errors compound. We therefore do
not consider these variants of the estimator further.
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An alternative way to compute the Bayes factor 𝐵12 between two
competing models M1 and M2, i.e. the ratio of model evidences
Eq. 4, in the NRE setting is to train an additional NRE model as a
binary classifier to discriminate samples from the joint and marginal
distribution of the two models, respectively. The classifier then learns
the ratio

𝑟𝝍12 (𝒅, 𝜽) =
𝑝(𝒅, 𝜽 |M1)

𝑝(𝒅 |M2)𝑝(𝜽 |M2)
, (20)

where 𝝍12 denotes the network weights for a model trained in such
a manner. Following similar notation, the standard neural ratio for a
single model, say model M1, can be denoted 𝑟𝝍11 . While it is not
possible to estimate the evidence of a single model directly, the Bayes
factor comparing the two models, which is the critical quantity for
model comparison, can then be recovered by

𝐵12 =
𝑟𝝍12 (𝒅, 𝜽)
𝑟𝝍11 (𝒅, 𝜽)

𝑝(𝜽 |M2)
𝑝(𝜽 |M1)

. (21)

We understand this method is already known to the SBI community
but were not able to locate any references discussing or applying it.
Since this approach does not lie within the family of methodologies
introduced in the current article, which leverage the learned harmonic
mean estimate to compute the model evidence from samples of the
surrogate posterior distribution, we leave the analysis of this approach
to further work.

5 NUMERICAL EXPERIMENTS

Here we present the results from our numerical experiments that
demonstrate and validate our SBI evidence calculation techniques.
For validation purposes, for each problem, we compare the value of
the evidence computed by our proposed approach (which we stress
does not include any knowledge of the likelihood) to values com-
puted by likelihood-based approaches, either derived analytically
(when possible) and/or computed numerically by likelihood-based
algorithms (e.g. by harmonic, MultiNest and/or PolyChord). Of
course in practical SBI settings, likelihood-based alternatives will
not typically be available. Nevertheless, it is useful to consider prob-
lems here where the likelihood is available so that we can validate
our SBI evidence computation techniques against likelihood-based
alternatives. All of the SBI examples were implemented using the
sbi8 software (Tejero-Cantero et al. 2020).

5.1 Linear Gaussian

The first problem we consider is that of a simple simulator which
linearly adds Gaussian noise 𝜖𝑖 to the value of the parameters 𝜃𝑖 , for
an arbitrary number of parameters 𝑖 = 1, . . . 𝑁:

d𝑖 = 𝜃𝑖 + 𝜖𝑖 , 𝜖𝑖 ∼ N(0, 1). (22)

This is a standard test problem in the sbi software, which we trivially
generalise to arbitrary dimension 𝑁 . The Gaussian noise has zero
mean and unit variance, and for the model parameters we assume a
uniform prior 𝜃𝑖 ∼ U[−2, 2] for each component 𝑖. The likelihood
for this model is Gaussian in the parameters 𝜽 = {𝜃1, . . . 𝜃𝑁 }:

𝑝(𝒅 |𝜽) = 1
(2𝜋)3/2 exp

(
−
(
𝒅 − 𝜽

)2
2

)
. (23)

8 https://github.com/mackelab/sbi

We assume an observation 𝒅0 = (0, 0, 0). For this model the Bayesian
evidence can be computed analytically:

𝑧 =
1

4𝑁 (2𝜋)𝑁/2

∫ 2

−2
d𝜃1· · ·

∫ 2

−2
d𝜃𝑁 exp

(
−
𝜃2

1 + · · · + 𝜃2
𝑁

2

)
=

[
erf

(√
2
) ]𝑁

4𝑁
. (24)

Fig. 2 summarises the results obtained from our model evidence
estimates for the linear Gaussian problem. We consider the three
cases 𝑁 = {3, 10, 20}, shown in the upper, middle and bottom panels,
respectively, to investigate any dependence of our evidence estimates
on the number of parameters considered. In all panels, the pink
background section shows results for likelihood-based methods for
validation purposes, while results for SBI (likelihood-free) methods
are shown in the light brown region. For all methods we repeat the
evidence estimation exercise 25 times to empirically describe the
statistical distributions of the model evidence estimates, shown by
the blue areas in each ‘violin’ of Fig. 2. All of the evidence values
reported in Fig. 2 can be compared with the analytical value of Eq. 24,
overplotted by the red dashed line.

Likelihood-based approaches include: (a) MultiNest, which pro-
duces samples and evidence estimates, run with importance sam-
pling (Feroz et al. 2019), 1000 live points, efficiency sampling of
0.3 and evidence tolerance of 0.01, resulting in ∼ 104 samples; (b)
PolyChord, which also produces samples as well as evidence esti-
mates, run using 1000 live points, resulting in ∼ 104 samples; (c)
harmonic, which produces evidence estimates from posterior sam-
ples, thus we adopt the affine sampler of Goodman & Weare (2010),
implemented in the emcee9 software (Foreman-Mackey et al. 2013),
to generate 105 post burn-in posterior samples from 100 random
walkers and adopt a hypersphere model for the learned importance
target 𝜑(𝜽), with radius equal to the square root of the number of
parameters. The number of samples generated by MultiNest and
PolyChord is dynamic, depending on, e.g., the tolerance parameter,
whereas for emcee sampling for harmonic we adopt a conservative,
fixed number of samples, since this is the configuration we will also
use when considering the SBI scenarios. Consequently, the variances
of the nested sampling approaches should not be compared directly
to those of the learned harmonic mean due to the differing number
of samples.

We analyse the performance of the estimators in terms of their
bias and variance (also adopting the terminology accuracy and pre-
cision, respectively, as common in the astrophysical literature). All
of the three likelihood-based methods provide unbiased average esti-
mates of the evidence. As mentioned, the variance of these estimators
should not be directly compared due to the differences in the number
of samples (an analysis of the performance of nested sampling and
learned harmonic mean approaches would be interesting but here we
are focused on validating our proposed techniques to compute the
evidence for SBI scenarios).

The results for the SBI methods are shown in the light brown
section of the plot. We report results for NPE, NLE and NRE, and
for each of them we provide an estimate using the amortised as well
as the sequential approach. For all methods we use 105 simulations
in the amortised approach, while in the sequential one we use 10
rounds with 104 simulations each, thus totalling the same number
of simulations for the two approaches. For each SBI method after
training a density estimator (in an amortised or sequential fashion)

9 https://github.com/dfm/emcee
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N = 3

N = 10

N = 20

Figure 2. Model evidence values estimated with different likelihood-based and simulation-based (likelihood-free) methods for the linear Gaussian example
described in Sec. 5.1, whose analytical truth value is shown by the red dashed line. We consider three different dimensions, namely 𝑁 = {3, 10, 20}, shown
in the upper, central and bottom panel, respectively. For all methods we repeat the evidence estimation exercise 25 times to empirically describe the statistical
distributions of the model evidence estimates, shown by the blue areas in each ‘violin’. The mean and one standard deviation error bars are illustrated in purple.
The pink section of this plot shows likelihood-based results obtained with MultiNest, PolyChord and harmonic (the latter using samples from emcee). Note
that the variance of the evidence estimates obtained by these three methods in the likelihood-based setting should be compared directly due to differing numbers
of samples (see Sec. 5.1 for a detailed discussion). The light brown section of the plot shows results for the simulation-based evidence pipelines summarised in
Fig. 1. These are all based on the use of harmonic to derive evidence estimates from posterior samples obtained with neural posterior estimation (NPE), neural
likelihood estimation (NLE) and neural ratio estimation (NRE), in their amortised and sequential variants.

we collect a total of 105 posterior samples, either directly for NPE
or by MCMC sampling using 100 emcee random walkers for NLE
and NRE. We train the harmonic importance target model using
20% of the samples and use the remaining 80% to compute the
evidence. As explained in Sec. 4.1 and Sec. 4.3, NPE and NRE require
an additional training of an NLE estimator to provide a surrogate
likelihood.

All of the SBI evidence computation techniques provide estimates
of the evidence whose distribution captures the true analytic evidence
in the 𝑁 = 3 and 𝑁 = 20 cases, although there is a residual bias in
many cases. Moreover, for 𝑁 = 10 the NPE estimator distribution
does not always capture the true evidence. The fact that the esti-
mates for dimension 𝑁 = 20 — the more challenging setting — do
encompass the true evidence suggests that these biases may be due
to insufficient training of the underlyling SBI models and/or their

difficulty to scale to higher dimensions. The variances of the SBI
estimates are generally larger than the likelihood-based approaches,
which is to be expected since in contrast to the likelihood-based set-
ting we do not include any knowledge of the likelihood. We also note
that each evidence estimate with an SBI method does include some
training noise due to the fact that we repeat the training at every
iteration. The NLE approaches exhibit in general less bias than the
NPE and NRE estimators. This may be due to the fact that the NLE
approach requires only a single neural density estimator (whereas the
NPE and NRE approaches require two), resulting in fewer sources of
approximation error.

In Fig. 3 we investigate the dependence of the evidence estimate
on the total number of simulations used in training the neural density
models. We consider the case 𝑁 = 3 and we report the results for the
amortised and sequential approach to NPE, NLE and NRE, varying
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Figure 3. Dependence of the accuracy of the evidence estimates on the number of simulations used for training with simulation-based methods for the
3-dimensional linear Gaussian example, whose analytical truth value is shown by the red dashed line. The mean and one standard deviation error bars are
illustrated in purple. We report results for the amortised and sequential versions of neural posterior estimation (NPE), neural likelihood estimation (NLE) and
neural ratio estimation (NPE). The evidence pipelines are summarised in Fig.1 and are all based on the use of harmonic to derive evidence estimates. In all
cases as the number of simulations increases the evidence estimates are less biased and the variances are reduced. These results suggests that evidence values
can be computed accurately in SBI settings, although care should be taken to ensure a sufficient number of simulations are used.

the number of simulations from 104, to 105, to 106. We observe that
in all cases that as the number of simulations increases the evidence
estimates are less biased and the variances are reduced. This initial
analysis suggests that evidence values can be computed accurately
in SBI settings, although care should be taken to ensure a sufficient

number of simulations are used. A more extensive analysis of the
accuracy and precision of SBI approaches for evidence calculation
would be welcome, along the lines of the extensive and informative
study performed by Hermans et al. (2022). However, such an analysis
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Figure 4. Model evidence values estimated with different likelihood-based and simulation-based (likelihood-free) methods for the Radiata Pine example
described in Sec. 5.2, whose analytical truth value is shown in red. Colour codes and labels are consistent with Fig. 2.

requires substantial computational resources and is beyond the scope
of the current article, where we introduce these new methodologies.

5.2 Radiata pine

The second problem we considered is one of the classic benchmark
examples used to evaluate techniques to estimate the model evidence
(Friel & Wyse 2012; Enderlein 1961). We refer to McEwen et al.
(2021), who demonstrated the effectiveness of the learned harmonic
mean estimator for this example, for a more detailed presentation of
the problem: here we simply report the main points relevant to our
evidence estimation task.

Our dataset is comprised of measurements of Radiata pine trees
of the maximum compression strength parallel to the grain 𝑦𝑖 , for
𝑖 = 1 . . . 42. The original scientific problem can be stated in terms
of two models: in Model 1 the density 𝑥𝑖 is assumed as a predictor
for 𝑦𝑖 , while in Model 2 the predictor is assumed to be the resin-
adjusted density 𝑧𝑖 . Both predictors are modelled with a Gaussian
linear regression model, for which the value of the evidence can be
derived analytically for each model. For brevity, we report results
only for Model 1; calculations for Model 2 are identical (we did also
experiment with this second model, finding excellent agreement with
the analytical estimates of the evidence). In Model 1, denoting with
𝑥 = 1

𝑛

∑42
𝑖=1 𝑥𝑖 the average density across the trees specimens, the

maximum compression strength 𝑦𝑖 is given by

𝑦𝑖 = 𝛼 + 𝛽(𝑥𝑖 − 𝑥) + 𝜖𝑖 , 𝜖𝑖 ∼ N(0, 𝜏−1). (25)

The model parameters are {𝛼, 𝛽, 𝜏}, whose prior distributions are

𝛼 ∼ N(𝜇𝛼, (𝑟0𝜏)−1), 𝛽 ∼ N(𝜇𝛽 , (𝑠0𝜏)−1), 𝜏 ∼ Ga(𝑎0, 𝑏0), (26)

with (𝜇𝛼, 𝜇𝛽 , 𝑟0, 𝑠0, 𝑎0, 𝑏0) = (3000, 185, 0.06, 6, 3, 2× 3002). The
evidence for this model can be computed analytically (cf. McEwen
et al. 2021, Eq. 104); the numerical value of its logarithm is log 𝑧 =

−310.12829.
Fig. 4 summarises our findings for the Radiata pine example; the

colour codes are the same as in Fig. 2. We repeat the same exper-
iments as in the linear Gaussian example, except this time for sim-
plicity we do not attempt to calculate the evidence with MultiNest
or PolyChord (as this would require some effort to adapt the prior
function for the Radiata pine model to be compatible with the uni-
form distribution on the unit cube required by these nested samplers).
Therefore, for the likelihood-based case we report only numerical re-
sults obtained by applying harmonic to emcee samples, using a
kernel density estimate for the learned harmonic mean estimator im-
portance target, with radius 0.02 of the target distribution. As in the
linear Gaussian example, we use 20% of 105 emcee posterior sam-
ples from 100 random walkers to train harmonic, and compute an
estimate of the evidence with the remaining 80%. As we can see in
the pink section of the plot, this provides unbiased and tight estimates
of the evidence.

In the light brown background section of Fig. 4 we can compare
results for SBI methods. The number of simulations we use to train
the density estimators in the various methods is the same as in the
baseline case for the linear Gaussian example, as is the number of
posterior samples used to train harmonic and derive evidence esti-
mates. All of the SBI evidence pipelines provide reasonably accurate
estimates of the evidence, with distribution ranges capturing the true
analytic evidence. The NPE and NRE approaches again exhibit some
bias, which is nevertheless within the spread of the distribution of
values. The NLE estimates again show good agreement with the
reference values.

5.3 Gravitational waves

The final problem we consider is a simulated measurement of a
gravitational wave (GW) signal from a single interferometer. We
consider a merger between two black holes of mass 𝑀1 = 𝑀2 =

20𝑀⊙ , following a similar numerical setup to the one considered
by Jeffrey & Wandelt (2020). We compute the noiseless time series
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Figure 5. Logarithm of the Bayes factors between source and alternative waveform models estimated with different likelihood-based and simulation-based
(likelihood-free) methods for the gravitational wave example described in Sec. 5.3. Shown in red, an estimate of the true value of the logarithm of the Bayes
factor was obtained using numerical integration. Colour codes and labels are consistent with Fig. 2 and Fig. 4.

of the strain signal using the pycbc10 software (Biwer et al. 2019).
We only consider the ‘+’ polarization of the detector strain ℎ+,× .
The duration of the signal is ∼ 0.12s, sampled at steps of duration
∼ 488𝜇s each. We rescale the signal by a multiplicative factor 1021

in order to work with values O(1). For each point in parameter space,
our simulated observable is a noisy gravitational waveform obtained
by adding Gaussian noise with zero mean and standard deviation
𝜎 = 0.3 to the noiseless template from pycbc.

For this inference problem we vary the two black hole masses
𝑀1, 𝑀2, each one over a uniform prior U [10, 30] 𝑀⊙ . We do not
consider geometrical properties of the black holes such as spin or
inclination angle, similarly to Jeffrey & Wandelt (2020). As noted by
Hermans et al. (2022), who studied a similar GW SBI problem, such
a simulated experimental setup requires significant computational
demand. Hence, for this example we run only 10 repetitions of each
inference method to empirically describe the statistical distribution of
evidence estimates. These estimates mimic a realistic scenario within
GW data analysis pipelines comparing model evidences for two dif-
ferent numerical approximant models assumed in the generation of
the noiseless template waveforms. The first of these two waveform
models corresponds to the actual one used to generate the simulated
observation, a reduced-order effective-one-body model (SEOBNR,
Taracchini et al. 2014), which we refer as the source model. The sec-
ond model we consider is an inspiral-merger-ringdown phenomeno-
logical model (IMRPhenom, Hannam et al. 2014), which we refer
to as the alternative model. For this configuration, we expect to find
the Bayes factors comparing models to favour the source SEOBNR
model. We verify this numerically, taking advantage of this prob-
lem’s deliberately low-dimensional parameter space, which allows
us to compute an estimate of the evidence for each model using di-
rect numerical integration. We find the logarithm of the Bayes factor

10 https://github.com/gwastro/pycbc

computed by direct numerical integration to be ∼ 3.25, favouring the
source model as anticipated.

We run the inference pipeline in multiple likelihood-based con-
texts, namely (a) obtaining samples and evidence estimates with
PolyChord, using the same configuration for this method as the one
described in Sec. 5.1; (b) sampling the parameter space with emcee,
collecting the same number of posterior samples as in both previous
numerical examples, and using harmonic to obtain an estimate of
the evidence, with a kernel density estimate for the importance target
distribution of radius 0.002 and 0.02 for the source and alternative
models, respectively. Numerical results from these likelihood-based
methods are reported in the pink background section of Fig. 5, where
we show violin plots for log-Bayes factors computed withPolyChord
and harmonic. The distribution of log-Bayes factors always favours
the true underlying source model and, as in previous examples, we
find strong agreement between each likelihood-based approach.

Numerical results from the SBI evidence estimates are shown in
the light brown background section of Fig. 5. The evidence pipelines
we consider are the same as described in Sec. 4 and for each pipeline,
the number of simulations used to train the density estimators are the
same as those used for the baseline linear Gaussian and Radiata pine
examples in Sec. 5.1 and Sec. 5.2, for both amortised and sequen-
tial approaches. We also use the same number of posterior samples
to train harmonic and derive estimates of the evidence. We notice
that all SBI methods produce log-Bayes factor estimates in general
agreement with the likelihood-based ones, albeit with a compara-
tively larger variance than presented in Fig. 2 and Fig. 4, due to
compounding errors from the multiple evidence estimates required
to obtain Bayes factors (cf. Eq. 4). NLE produces more unbiased
estimates of the log-Bayes factors compared to NPE and NRE — a
similar trend to that observed in the linear Gaussian and Radiata pine
examples (cf. Fig 2 and Fig. 4).
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6 CONCLUSIONS

In this article we propose a novel methodology to compute the
model evidence for modern neural density estimation approaches to
simulation-based inference (SBI) using the learned harmonic mean
estimator. Our approach leverages the property of the learned har-
monic mean estimator that it is decoupled from the sampling strategy
and only requires samples of the posterior. This allows us to develop
SBI model comparison techniques for all three main neural density
estimation approaches: neural posterior estimation (NPE), neural
likelihood estimation (NLE), and neural ratio estimation (NRE).

We demonstrate and validate our SBI evidence calculation tech-
niques on a range of inference problems, using the learned har-
monic mean estimator as implemented in the harmonic software.
We validate all SBI evidence estimator approaches, computed using
harmonic, against those computed by likelihood-based alternatives.
We find that harmonic produces values of the evidence that are
in excellent agreement with those computed by the likelihood-based
nested sampling algorithms MultiNest and PolyChord. Our results
suggest that the learned harmonic mean estimator can be reliably used
as an alternative to nested sampling for evidence estimation.

We also compare the different SBI evidence computation ap-
proaches that we propose and find that the NLE evidence estimation
approach provides more accurate evidence estimates compared to the
NPE and NRE approaches. This result is particularly encouraging for
applications to cosmological scenarios, where it is very common to
perform SBI inference using the pydelfi software, which indeed
implements (sequential) NLE to sample the posterior distribution.

Overall, our methodology and proof-of-concept analysis highlight
the potential of the learned harmonic mean estimator as an additional
tool for Bayesian model selection in SBI settings. Future research
will focus on extending the applicability of harmonic to larger data
and parameter spaces, as well as on estimating the variance of the
estimators directly, folding in both sampling variance and neural
density approximate error. Application to more realistic examples
and problems will be insightful, as well as a thorough analysis of
the accuracy and precision of the proposed approach; we advocate a
future study similar to Hermans et al. (2022) but focused on model
selection. Our hope is that this article provides a first step towards
the computation of the Bayesian model evidence in SBI scenarios,
in order to facilitate principled and robust Bayesian model selection.
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